Advertisements
Advertisements
प्रश्न
Find the parametric form of vector equation, and Cartesian equations of the plane containing the line `vec"r" = (hat"i" - hat"j" + 3hat"k") + "t"(2hat"i" - hat"j" + 4hat"k")` and perpendicular to plane `vec"r"*(hat"i" + 2hat"j" + hat"k")` = 8
उत्तर
`vec"a" = hat"i" - hat"j" + 3hat"k"`
`vec"b" = 2hat"i" - hat"j" + 4hat"k"`
`vec"c" = hat"i" + 2hat"j" + hat"k"`
Parametric form of vector equation
`vec"r" = vec"a" + "s"vec"b" + "t"vec"c"`
`vec"r" = (hat"i" - hat"j" + 3hat"k") + "s"(2hat"j" - hat"i" + 4hat"k") + "t"(hat"i" + 2hat"j" + hat"k")`
`vec"b" xx vec"c" = |(hat"i", hat"j", hat"k"),(2, -1, 4),(1, 2, 1)|`
= `hat"i"(- 1 - 8) - hat"j"(2 - 4) + hat"k"(4 + 1)`
= `9hat"i" + 2hat"j" + 5hat"k"`
= `-(9hat"i" - 2hat"j" - 5hat"k")`
Non-parametric form of vector equation:
`(vec"r" - vec"a")*(vec"b" xx vec"c") = vec0`
`[vec"r" - (hat"i" - hat"j" + 3hat"k")]*(-(9hat"i" - 2hat"j" - 5hat"k")) = vec0`
`vec"r"*(+9hat"i" - 2hat"j" - 5hat"k")` = + 9 + 2 – 15
`[vec"r"*(9hat"i" - 2hat"j" - 5hat"k")]` = – 4
Cartesian equation
9x – 2y – 5z = – 4
9x – 2y – 5z + 4 = 0
APPEARS IN
संबंधित प्रश्न
A plane passes through the point (− 1, 1, 2) and the normal to the plane of magnitude `3sqrt(3)` makes equal acute angles with the coordinate axes. Find the equation of the plane
Find the intercepts cut off by the plane `vec"r"*(6hat"i" + 45hat"j" - 3hat"k")` = 12 on the coordinate axes
If a plane meets the co-ordinate axes at A, B, C such that the centroid of the triangle ABC is the point (u, v, w), find the equation of the plane
Find the non-parametric form of vector equation and Cartesian equation of the plane passing through the point (2, 3, 6) and parallel to thestraight lines `(x - 1)/2 = (y + 1)/3 = (x - 3)/1` and `(x + 3)/2 = (y - 3)/(-5) = (z + 1)/(-3)`
Find the parametric form of vector equation and Cartesian equations of the plane passing through the points (2, 2, 1), (1, – 2, 3) and parallel to the straight line passing through the points (2, 1, – 3) and (– 1, 5, – 8)
Find the non-parametric form of vector equation and cartesian equation of the plane passing through the point (1, − 2, 4) and perpendicular to the plane x + 2y − 3z = 11 and parallel to the line `(x + 7)/3 = (y + 3)/(-1) = z/1`
Choose the correct alternative:
If `vec"a", vec"b", vec"c"` are three unit vectors such that `vec"a"` is perpendicular to `vec"b"`, and is parallel to `vec"c"` then `vec"a" xx (vec"b" xx vec"c")` is equal to
Choose the correct alternative:
The volume of the parallelepiped with its edges represented by the vectors `hat"i" + hat"j", hat"i" + 2hat"j", hat"i" + hat"j" + pihat"k"` is
Choose the correct alternative:
If the volume of the parallelepiped with `vec"a" xx vec"b", vec"b" xx vec"c", vec"c" xx vec"a"` as coterminous edges is 8 cubic units, then the volume of the parallelepiped with `(vec"a" xx vec"b") xx (vec"b" xx vec"c"), (vec"b" xx vec"c") xx (vec"c" xx vec"a")` and `(vec"c" xx vec"a") xx (vec"a" xx vec"b")` as coterminous edges is
Choose the correct alternative:
The angle between the lines `(x - 2)/3 = (y + 1)/(-2)`, z = 2 ad `(x - 1)/1 = (2y + 3)/3 = (z + 5)/2` is
Choose the correct alternative:
If the line `(x - )/3 = (y - 1)/(-5) = (x + 2)/2` lies in the plane x + 3y – αz + ß = 0 then (α + ß) is
Choose the correct alternative:
The angle between the line `vec"r" = (hat"i" + 2hat"j" - 3hat"k") + "t"(2hat"i" + hat"j" - 2hat"k")` and the plane `vec"r"(hat"i" + hat"j") + 4` = 0 is
Choose the correct alternative:
The distance between the planes x + 2y + 3z + 7 = 0 and 2x + 4y + 6z + 7 = 0 is
Let d be the distance between the foot of perpendiculars of the points P(1, 2, –1) and Q(2, –1, 3) on the plane –x + y + z = 1. Then d2 is equal to ______.
A plane P contains the line x + 2y + 3z + 1 = 0 = x – y – z – 6, and is perpendicular to the plane –2x + y + z + 8 = 0. Then which of the following points lies on P?
The equation of a plane containing the line of intersection of the planes 2x – y – 4 = 0 and y + 2z – 4 = 0 and passing through the point (1, 1, 0) is ______.
The point in which the join of (–9, 4, 5) and (11, 0, –1) is met by the perpendicular from the origin is ______.
A point moves in such a way that sum of squares of its distances from the co-ordinate axis is 36, then distance of then given point from origin are ______.