Advertisements
Advertisements
प्रश्न
Find the non-parametric form of vector equation and cartesian equation of the plane passing through the point (1, − 2, 4) and perpendicular to the plane x + 2y − 3z = 11 and parallel to the line `(x + 7)/3 = (y + 3)/(-1) = z/1`
उत्तर
The required plane passing through the point `vec"a" = vec"i" - 2vec"j" + 4vec"k"` and parallel to the plane `vec"b" = vec"i" + 2vec"j" - 3vec"k"` and parallel to the line `vec"c" = 3vec"i" - vec"j" + vec"k"`
`vec"b" xx vec"c" = |(vec"i", vec"j", vec"k"),(1, 2, -3),(3, -1, 1)|`
= `vec"i"(2 - 3) - vec"j"(1 + 9) + vec"k"(-1 - 6)`
`vec"b" xx vec"c" = -vec"i" - 10vec"j" - 7vec"k"`
Non-parametric form of vector equation
`(vec"r" - vec"a")*(vec"b" xx vec"c")` = 0
`(vec"r" - vec"a")*(-vec"i" - 10vec"j" - 7vec"k")` = 0
`vec"r"*(-vec"i" - 10vec"j" - 7vec"k") = vec"a"*(-vec"i" - 10vec"j" - 7vec"k")`
`vec"r"*(-vec"i" - 10vec"j" - 7vec"k") = (vec"i" - 2vec"j" + 4vec"k")(-vec"i" - 10vec"j" - 7vec"k")`
`vec"r"*(-vec"i" - 10vec"j" - 7vec"k")` = – 1 + 20 – 28
`vec"r"*(-vec"i" - 10vec"j" - 7vec"k")` = – 9
or
`vec"r"*(vec"i" + 10vec"j" + 7vec"k")` = 9
Cartesian equation
`(xvec"i" + yvec"j" + zvec"k")*(vec"i" + 10vec"j" + 7vec"k")` = 9
x + 10y + 7z – 9 = 0
APPEARS IN
संबंधित प्रश्न
Find a parametric form of vector equation of a plane which is at a distance of 7 units from t the origin having 3, – 4, 5 as direction ratios of a normal to it
Find the direction cosines of the normal to the plane 12x + 3y – 4z = 65. Also find the non-parametric form of vector equation of a plane and the length of the perpendicular to the plane from the origin
A plane passes through the point (− 1, 1, 2) and the normal to the plane of magnitude `3sqrt(3)` makes equal acute angles with the coordinate axes. Find the equation of the plane
Find the intercepts cut off by the plane `vec"r"*(6hat"i" + 45hat"j" - 3hat"k")` = 12 on the coordinate axes
If a plane meets the co-ordinate axes at A, B, C such that the centroid of the triangle ABC is the point (u, v, w), find the equation of the plane
Find the non-parametric form of vector equation and Cartesian equation of the plane passing through the point (2, 3, 6) and parallel to thestraight lines `(x - 1)/2 = (y + 1)/3 = (x - 3)/1` and `(x + 3)/2 = (y - 3)/(-5) = (z + 1)/(-3)`
Find the parametric form of vector equation, and Cartesian equations of the plane containing the line `vec"r" = (hat"i" - hat"j" + 3hat"k") + "t"(2hat"i" - hat"j" + 4hat"k")` and perpendicular to plane `vec"r"*(hat"i" + 2hat"j" + hat"k")` = 8
Show that the straight lines `vec"r" = (5hat"i" + 7hat"j" - 3hat"k") + "s"(4hat"i" + 4hat"j" - 5hat"k")` and `vec"r"(8hat"i" + 4hat"j" + 5hat"k") + "t"(7hat"i" + hat"j" + 3hat"k")` are coplanar. Find the vector equation of the plane in which they lie
Show that the lines `(x - 2)/1 = (y - 3)/1 = (z - 4)/3` and `(x - 1)/(-3) = (y - 4)/2 = (z - 5)/1` are coplanar. Also, find the plane containing these lines
If the straight lines `(x - 1)/2 = (y + 1)/lambda = z/2` and `(x + 1)/5 = (y + 1)/2 = z/lambda` are coplanar, find λ and equations of the planes containing these two lines
Choose the correct alternative:
The volume of the parallelepiped with its edges represented by the vectors `hat"i" + hat"j", hat"i" + 2hat"j", hat"i" + hat"j" + pihat"k"` is
Choose the correct alternative:
If `vec"a", vec"b", vec"c"` are three non-coplanar vectors such that `vec"a" xx (vec"b" xx vec"c") = (vec"b" + vec"c")/sqrt(2)` then the angle between `vec"a"` and `vec"b"` is
Choose the correct alternative:
The angle between the lines `(x - 2)/3 = (y + 1)/(-2)`, z = 2 ad `(x - 1)/1 = (2y + 3)/3 = (z + 5)/2` is
Let `(x - 2)/3 = (y + 1)/(-2) = (z + 3)/(-1)` lie on the plane px – qy + z = 5, for p, q ∈ R. The shortest distance of the plane from the origin is ______.
The equation of the plane passing through the point (1, 2, –3) and perpendicular to the planes 3x + y – 2z = 5 and 2x – 5y – z = 7, is ______.
A plane P contains the line x + 2y + 3z + 1 = 0 = x – y – z – 6, and is perpendicular to the plane –2x + y + z + 8 = 0. Then which of the following points lies on P?
The point in which the join of (–9, 4, 5) and (11, 0, –1) is met by the perpendicular from the origin is ______.
A point moves in such a way that sum of squares of its distances from the co-ordinate axis is 36, then distance of then given point from origin are ______.