हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा १२

Show that the lines x-21=y-31=z-43 and x-1-3=y-42=z-51 are coplanar. Also, find the plane containing these lines - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the lines `(x - 2)/1 = (y - 3)/1 = (z - 4)/3` and `(x - 1)/(-3) = (y - 4)/2 = (z - 5)/1` are coplanar. Also, find the plane containing these lines

योग

उत्तर

(x1, y1, z1) = (2, 3, 4) and (x2, y2, z2) = (1, 4, 5)

(b1, b2, b3) = (1, 1, 3) and (d1, d2, d3) = (– 3, 2, 1)

Condition for coplanarity

`|(x_2 - x_1, y_2 - y_1, z_2 - z_1),("b"_1, "b"_2, "b"_3),("d"_1, "d"_2, "d"_3)|` = 0

= `|(-1, 1, 1),(1, 1, 3),(-3, 2, 1)|`

= `-(1 - 6) - 1(1 + 9) + 1(2 + 3)`

= 5 – 10 + 5

= 0

∴ The given two lines are colpanar

Cartesian form of equation of the plane containing the two given coplanar lines.

`|(x - x_1, y - y_1, z - z_1),("b"_1, "b"_2, "b"_3),("d"_1, "d"_2, "d"_3)|` = 0

`|(x - 2, y - 3, z - 4),(1, 1, 3),(-3, 2, 1)|` = 0

(x – 2)[1 – 6] – (y – 3)[1 + 9] + (z – 4)[2 + 3] = 0

– 5(x – 2) – 10(y – 3) + 5(z – 4) = 0

– 5x + 10 – 10y + 30 + 5z – 20 = 0

– 5x – 10y + 5z + 20 = 0

(÷ by – 5) ⇒ x + 2y – 2z – 4 = 0

shaalaa.com
Different Forms of Equation of a Plane
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Applications of Vector Algebra - Exercise 6.8 [पृष्ठ २६६]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
अध्याय 6 Applications of Vector Algebra
Exercise 6.8 | Q 2 | पृष्ठ २६६

संबंधित प्रश्न

Find the intercepts cut off by the plane `vec"r"*(6hat"i" + 45hat"j" - 3hat"k")` = 12 on the coordinate axes


If a plane meets the co-ordinate axes at A, B, C such that the centroid of the triangle ABC is the point (u, v, w), find the equation of the plane


Find the non-parametric form of vector equation and Cartesian equation of the plane passing through the point (2, 3, 6) and parallel to thestraight lines `(x - 1)/2 = (y + 1)/3 = (x - 3)/1` and `(x + 3)/2 = (y - 3)/(-5) = (z + 1)/(-3)`


Find the parametric form of vector equation and Cartesian equations of the plane passing through the points (2, 2, 1), (1, – 2, 3) and parallel to the straight line passing through the points (2, 1, – 3) and (– 1, 5, – 8)


If the straight lines `(x - 1)/1 - (y - 2)/2 = (z - 3)/"m"^2` and `(x - 3)/5 = (y - 2)/"m"^2 = (z - 1)/2` are coplanar, find the distinct real values of m


Choose the correct alternative:

The volume of the parallelepiped with its edges represented by the vectors `hat"i" + hat"j", hat"i" + 2hat"j", hat"i" + hat"j" + pihat"k"` is


Choose the correct alternative:

If `vec"a", vec"b", vec"c"` are three non-coplanar vectors such that `vec"a" xx (vec"b" xx vec"c") = (vec"b" + vec"c")/sqrt(2)` then the angle between `vec"a"` and `vec"b"` is


Choose the correct alternative:

If the volume of the parallelepiped with `vec"a" xx vec"b", vec"b" xx vec"c", vec"c" xx vec"a"` as coterminous edges is 8 cubic units, then the volume of the parallelepiped with `(vec"a" xx vec"b") xx (vec"b" xx vec"c"), (vec"b" xx vec"c") xx (vec"c" xx vec"a")` and `(vec"c" xx vec"a") xx (vec"a" xx vec"b")` as coterminous edges is


Choose the correct alternative:

Consider the vectors  `vec"a", vec"b", vec"c", vec"d"` such that `(vec"a" xx vec"b") xx (vec"c" xx vec"d") = vec0`. Let P1 and P2 be the planes determined by the pairs of vectors `vec"a", vec"b"` and `vec'c", vec"d"` respectively. Then the angle between P1 and P2 is


Choose the correct alternative:

The angle between the line `vec"r" = (hat"i" + 2hat"j" - 3hat"k") + "t"(2hat"i" + hat"j" - 2hat"k")` and the plane `vec"r"(hat"i" + hat"j") + 4` = 0 is


Choose the correct alternative:

The distance between the planes x + 2y + 3z + 7 = 0 and 2x + 4y + 6z + 7 = 0 is


Choose the correct alternative:

If the distance of the point (1, 1, 1) from the origin is half of its distance from the plane x + y + z + k = 0, then the values of k are


Choose the correct alternative:

If the length of the perpendicular from the origin to the plane 2x + 3y + λz = 1, λ > 0 is `1/5, then the value of λ is


The equation of the plane passing through the point (1, 2, –3) and perpendicular to the planes 3x + y – 2z = 5 and 2x – 5y – z = 7, is ______.


A plane P contains the line x + 2y + 3z + 1 = 0 = x – y – z – 6, and is perpendicular to the plane –2x + y + z + 8 = 0. Then which of the following points lies on P?


The plane passing through the points (1, 2, 1), (2, 1, 2) and parallel to the line, 2x = 3y, z = 1 also passes through the point ______.


A point moves in such a way that sum of squares of its distances from the co-ordinate axis is 36, then distance of then given point from origin are ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×