Advertisements
Advertisements
प्रश्न
Choose the correct alternative:
Consider the vectors `vec"a", vec"b", vec"c", vec"d"` such that `(vec"a" xx vec"b") xx (vec"c" xx vec"d") = vec0`. Let P1 and P2 be the planes determined by the pairs of vectors `vec"a", vec"b"` and `vec'c", vec"d"` respectively. Then the angle between P1 and P2 is
विकल्प
0°
45°
60°
90°
उत्तर
0°
APPEARS IN
संबंधित प्रश्न
A plane passes through the point (− 1, 1, 2) and the normal to the plane of magnitude `3sqrt(3)` makes equal acute angles with the coordinate axes. Find the equation of the plane
Find the non-parametric form of vector equation and cartesian equation of the plane passing through the point (1, − 2, 4) and perpendicular to the plane x + 2y − 3z = 11 and parallel to the line `(x + 7)/3 = (y + 3)/(-1) = z/1`
Find the parametric vector, non-parametric vector and Cartesian form of the equation of the plane passing through the point (3, 6, – 2), (– 1, – 2, 6) and (6, 4, – 2)
Find the non-parametric form of vector equation and Cartesian equations of the plane `vec"r" = (6hat"i" - hat"j" + hat"k") + "s"(-hat"i" + 2hat"j" + hat"k") + "t"(-5hat"i" - 4hat"j" - 5hat"k")`
If the straight lines `(x - 1)/2 = (y + 1)/lambda = z/2` and `(x + 1)/5 = (y + 1)/2 = z/lambda` are coplanar, find λ and equations of the planes containing these two lines
Choose the correct alternative:
If `vec"a", vec"b", vec"c"` are three unit vectors such that `vec"a"` is perpendicular to `vec"b"`, and is parallel to `vec"c"` then `vec"a" xx (vec"b" xx vec"c")` is equal to
Choose the correct alternative:
The volume of the parallelepiped with its edges represented by the vectors `hat"i" + hat"j", hat"i" + 2hat"j", hat"i" + hat"j" + pihat"k"` is
Choose the correct alternative:
If `vec"a"` and `vec"b"` are unit vectors such that `[vec"a", vec"b", vec"a" xx vec"b"] = 1/4`, are unit vectors such that `vec"a"` nad `vec"b"` is
Choose the correct alternative:
If the volume of the parallelepiped with `vec"a" xx vec"b", vec"b" xx vec"c", vec"c" xx vec"a"` as coterminous edges is 8 cubic units, then the volume of the parallelepiped with `(vec"a" xx vec"b") xx (vec"b" xx vec"c"), (vec"b" xx vec"c") xx (vec"c" xx vec"a")` and `(vec"c" xx vec"a") xx (vec"a" xx vec"b")` as coterminous edges is
Choose the correct alternative:
The angle between the line `vec"r" = (hat"i" + 2hat"j" - 3hat"k") + "t"(2hat"i" + hat"j" - 2hat"k")` and the plane `vec"r"(hat"i" + hat"j") + 4` = 0 is
Choose the correct alternative:
The distance between the planes x + 2y + 3z + 7 = 0 and 2x + 4y + 6z + 7 = 0 is
Choose the correct alternative:
If the distance of the point (1, 1, 1) from the origin is half of its distance from the plane x + y + z + k = 0, then the values of k are
The equation of the plane passing through the point (1, 2, –3) and perpendicular to the planes 3x + y – 2z = 5 and 2x – 5y – z = 7, is ______.
A plane P contains the line x + 2y + 3z + 1 = 0 = x – y – z – 6, and is perpendicular to the plane –2x + y + z + 8 = 0. Then which of the following points lies on P?
The equation of a plane containing the line of intersection of the planes 2x – y – 4 = 0 and y + 2z – 4 = 0 and passing through the point (1, 1, 0) is ______.
Consider a plane 2x + y – 3z = 5 and the point P(–1, 3, 2). A line L has the equation `(x - 2)/3 = (y - 1)/2 = (z - 3)/4`. The co-ordinates of a point Q of the line L such that `vec(PQ)` is parallel to the given plane are (α, β, γ), then the product βγ is ______.