हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा १२

Choose the correct alternative: If the volume of the parallelepiped with abbccaa→×b→,b→×c→,c→×a→ as coterminous edges is 8 cubic units, then the volume of the parallelepiped with abbcbcca - Mathematics

Advertisements
Advertisements

प्रश्न

Choose the correct alternative:

If the volume of the parallelepiped with `vec"a" xx vec"b", vec"b" xx vec"c", vec"c" xx vec"a"` as coterminous edges is 8 cubic units, then the volume of the parallelepiped with `(vec"a" xx vec"b") xx (vec"b" xx vec"c"), (vec"b" xx vec"c") xx (vec"c" xx vec"a")` and `(vec"c" xx vec"a") xx (vec"a" xx vec"b")` as coterminous edges is

विकल्प

  • 64 cubic units

  • 512 cubic units

  • 64 cubic units

  • 24 cubic units

MCQ

उत्तर

64 cubic units

shaalaa.com
Different Forms of Equation of a Plane
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Applications of Vector Algebra - Exercise 6.10 [पृष्ठ २७७]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
अध्याय 6 Applications of Vector Algebra
Exercise 6.10 | Q 11 | पृष्ठ २७७

संबंधित प्रश्न

Find the direction cosines of the normal to the plane 12x + 3y – 4z = 65. Also find the non-parametric form of vector equation of a plane and the length of the perpendicular to the plane from the origin


Find the intercepts cut off by the plane `vec"r"*(6hat"i" + 45hat"j" - 3hat"k")` = 12 on the coordinate axes


If a plane meets the co-ordinate axes at A, B, C such that the centroid of the triangle ABC is the point (u, v, w), find the equation of the plane


Find the parametric form of vector equation, and Cartesian equations of the plane passing through the points (2, 2, 1), (9, 3, 6) and perpendicular to the plane 2x + 6y + 6z = 9


Find the parametric form of vector equation, and Cartesian equations of the plane containing the line `vec"r" = (hat"i" - hat"j" + 3hat"k") + "t"(2hat"i" - hat"j" + 4hat"k")` and perpendicular to plane `vec"r"*(hat"i" + 2hat"j" + hat"k")` = 8


Find the non-parametric form of vector equation and Cartesian equations of the plane `vec"r" = (6hat"i" - hat"j" + hat"k") + "s"(-hat"i" + 2hat"j" + hat"k") + "t"(-5hat"i" - 4hat"j" - 5hat"k")`


Show that the lines `(x - 2)/1 = (y - 3)/1 = (z - 4)/3` and `(x - 1)/(-3) = (y - 4)/2 = (z - 5)/1` are coplanar. Also, find the plane containing these lines


If the straight lines `(x - 1)/1 - (y - 2)/2 = (z - 3)/"m"^2` and `(x - 3)/5 = (y - 2)/"m"^2 = (z - 1)/2` are coplanar, find the distinct real values of m


Choose the correct alternative:

If `vec"a", vec"b", vec"c"` are three unit vectors such that `vec"a"` is perpendicular to `vec"b"`, and is parallel to `vec"c"` then `vec"a" xx (vec"b" xx vec"c")` is equal to


Choose the correct alternative:

The volume of the parallelepiped with its edges represented by the vectors `hat"i" + hat"j", hat"i" + 2hat"j", hat"i" + hat"j" + pihat"k"` is


Choose the correct alternative:

Consider the vectors  `vec"a", vec"b", vec"c", vec"d"` such that `(vec"a" xx vec"b") xx (vec"c" xx vec"d") = vec0`. Let P1 and P2 be the planes determined by the pairs of vectors `vec"a", vec"b"` and `vec'c", vec"d"` respectively. Then the angle between P1 and P2 is


Choose the correct alternative:

If the line `(x  - )/3 = (y - 1)/(-5) = (x + 2)/2` lies in the plane x + 3y – αz + ß = 0 then (α + ß) is


Choose the correct alternative:

The angle between the line `vec"r" = (hat"i" + 2hat"j" - 3hat"k") + "t"(2hat"i" + hat"j" - 2hat"k")` and the plane `vec"r"(hat"i" + hat"j") + 4` = 0 is


Choose the correct alternative:

Distance from the origin to the plane 3x – 6y + 2z + 7 = 0 is


Choose the correct alternative:

The distance between the planes x + 2y + 3z + 7 = 0 and 2x + 4y + 6z + 7 = 0 is


Choose the correct alternative:

If the planes `vec"r"(2hat"i" - lambdahat"j" + hatk")` =  and `vec"r"(4hat"i" + hat"j" - muhat"k")` = 5 are parallel, then the value of λ and µ are


The plane passing through the points (1, 2, 1), (2, 1, 2) and parallel to the line, 2x = 3y, z = 1 also passes through the point ______.


The equation of a plane containing the line of intersection of the planes 2x – y – 4 = 0 and y + 2z – 4 = 0 and passing through the point (1, 1, 0) is ______.


A point moves in such a way that sum of squares of its distances from the co-ordinate axis is 36, then distance of then given point from origin are ______.


Consider a plane 2x + y – 3z = 5 and the point P(–1, 3, 2). A line L has the equation `(x - 2)/3 = (y - 1)/2 = (z - 3)/4`. The co-ordinates of a point Q of the line L such that `vec(PQ)` is parallel to the given plane are (α, β, γ), then the product βγ is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×