Advertisements
Advertisements
प्रश्न
If the straight lines `(x - 1)/2 = (y + 1)/lambda = z/2` and `(x + 1)/5 = (y + 1)/2 = z/lambda` are coplanar, find λ and equations of the planes containing these two lines
उत्तर
If the two lines are coplanar
`|(x_2 - x_1, y_2 - y_1, z_2 - z_1),(l_1, "m"_1, "n"_1),("l"_2, "m"_2, "n"_2)|` = 0
(x1, y1, z1) = (1, −1, 0), (x2, y2, z2) = (−1, −1, 0)
(l1, m1, n1) = (2, λ, 2), (l2, m2, n2) = (5, 2, λ)
⇒ `|(-2, 0, 0),(2, lambda, 2),(5, 2, lambda)|` = 0
When λ = 2
(x1, y1, z1) = (1, −1, 0)
(b1, b2, b3) = (2, 2, 2)
(d1, d2, d3) = (5, 2, 2)
`|(x - x_1, y - y_1, z - z_1),("b"_1, "b"_2, "b"_3),("d"_1, "d"_2, "d"_3)|` = 0
⇒ `|(x - 1, y + 1, z - 0),(2, 2, 2),(5, 2, 2)|` = 0
⇒ (x – 1)(0) – (y + 1)(– 6) + z(6) = 0
⇒ 6(y + 1) – 6z = 0
⇒ 6y + 6 – 6z = 0
⇒ y – z + 1 = 0
When λ = 2
(b1, b2, b3) = (2, – 2, 2)
(d1, d2, d3) = (5, 2, – 2)
⇒ `|(x - 1, y + 1, z - 0),(2, -2, 2),(5, 2, -2)|` = 0
⇒ (x – 1)(0) – (y + 1)(– 14) + z(4 + 10) = 0
⇒ 14(y + 1) + 14z = 0
⇒ 14y + 14 + 14z = 0
⇒ y + z + 1 = 0
APPEARS IN
संबंधित प्रश्न
If a plane meets the co-ordinate axes at A, B, C such that the centroid of the triangle ABC is the point (u, v, w), find the equation of the plane
Find the parametric form of vector equation and Cartesian equations of the plane passing through the points (2, 2, 1), (1, – 2, 3) and parallel to the straight line passing through the points (2, 1, – 3) and (– 1, 5, – 8)
Find the parametric form of vector equation, and Cartesian equations of the plane containing the line `vec"r" = (hat"i" - hat"j" + 3hat"k") + "t"(2hat"i" - hat"j" + 4hat"k")` and perpendicular to plane `vec"r"*(hat"i" + 2hat"j" + hat"k")` = 8
Find the non-parametric form of vector equation and Cartesian equations of the plane `vec"r" = (6hat"i" - hat"j" + hat"k") + "s"(-hat"i" + 2hat"j" + hat"k") + "t"(-5hat"i" - 4hat"j" - 5hat"k")`
Show that the straight lines `vec"r" = (5hat"i" + 7hat"j" - 3hat"k") + "s"(4hat"i" + 4hat"j" - 5hat"k")` and `vec"r"(8hat"i" + 4hat"j" + 5hat"k") + "t"(7hat"i" + hat"j" + 3hat"k")` are coplanar. Find the vector equation of the plane in which they lie
Choose the correct alternative:
If `vec"a", vec"b", vec"c"` are three unit vectors such that `vec"a"` is perpendicular to `vec"b"`, and is parallel to `vec"c"` then `vec"a" xx (vec"b" xx vec"c")` is equal to
Choose the correct alternative:
The volume of the parallelepiped with its edges represented by the vectors `hat"i" + hat"j", hat"i" + 2hat"j", hat"i" + hat"j" + pihat"k"` is
Choose the correct alternative:
If the volume of the parallelepiped with `vec"a" xx vec"b", vec"b" xx vec"c", vec"c" xx vec"a"` as coterminous edges is 8 cubic units, then the volume of the parallelepiped with `(vec"a" xx vec"b") xx (vec"b" xx vec"c"), (vec"b" xx vec"c") xx (vec"c" xx vec"a")` and `(vec"c" xx vec"a") xx (vec"a" xx vec"b")` as coterminous edges is
Choose the correct alternative:
If `vec"a" = 2hat"i" + 3hat"j" - hat"k", vec"b" = hat"i" + 2hat"j" - 5hat"k", vec"c" = 3hat"i" + 5hat"j" - hat"k"`, then a vector perpendicular to `vec"a"` and lies in the plane containing `vec"b"` and `vec"c"` is
Choose the correct alternative:
The angle between the line `vec"r" = (hat"i" + 2hat"j" - 3hat"k") + "t"(2hat"i" + hat"j" - 2hat"k")` and the plane `vec"r"(hat"i" + hat"j") + 4` = 0 is
Choose the correct alternative:
If the distance of the point (1, 1, 1) from the origin is half of its distance from the plane x + y + z + k = 0, then the values of k are
Let d be the distance between the foot of perpendiculars of the points P(1, 2, –1) and Q(2, –1, 3) on the plane –x + y + z = 1. Then d2 is equal to ______.
Let `(x - 2)/3 = (y + 1)/(-2) = (z + 3)/(-1)` lie on the plane px – qy + z = 5, for p, q ∈ R. The shortest distance of the plane from the origin is ______.
A plane P contains the line x + 2y + 3z + 1 = 0 = x – y – z – 6, and is perpendicular to the plane –2x + y + z + 8 = 0. Then which of the following points lies on P?
The plane passing through the points (1, 2, 1), (2, 1, 2) and parallel to the line, 2x = 3y, z = 1 also passes through the point ______.
The point in which the join of (–9, 4, 5) and (11, 0, –1) is met by the perpendicular from the origin is ______.
A point moves in such a way that sum of squares of its distances from the co-ordinate axis is 36, then distance of then given point from origin are ______.
Let (λ, 2, 1) be a point on the plane which passes through the point (4, –2, 2). If the plane is perpendicular to the line joining the points (–2, –21, 29) and (–1, –16, 23), then `(λ/11)^2 - (4λ)/11 - 4` is equal to ______.