Advertisements
Advertisements
Question
If the straight lines `(x - 1)/2 = (y + 1)/lambda = z/2` and `(x + 1)/5 = (y + 1)/2 = z/lambda` are coplanar, find λ and equations of the planes containing these two lines
Solution
If the two lines are coplanar
`|(x_2 - x_1, y_2 - y_1, z_2 - z_1),(l_1, "m"_1, "n"_1),("l"_2, "m"_2, "n"_2)|` = 0
(x1, y1, z1) = (1, −1, 0), (x2, y2, z2) = (−1, −1, 0)
(l1, m1, n1) = (2, λ, 2), (l2, m2, n2) = (5, 2, λ)
⇒ `|(-2, 0, 0),(2, lambda, 2),(5, 2, lambda)|` = 0
When λ = 2
(x1, y1, z1) = (1, −1, 0)
(b1, b2, b3) = (2, 2, 2)
(d1, d2, d3) = (5, 2, 2)
`|(x - x_1, y - y_1, z - z_1),("b"_1, "b"_2, "b"_3),("d"_1, "d"_2, "d"_3)|` = 0
⇒ `|(x - 1, y + 1, z - 0),(2, 2, 2),(5, 2, 2)|` = 0
⇒ (x – 1)(0) – (y + 1)(– 6) + z(6) = 0
⇒ 6(y + 1) – 6z = 0
⇒ 6y + 6 – 6z = 0
⇒ y – z + 1 = 0
When λ = 2
(b1, b2, b3) = (2, – 2, 2)
(d1, d2, d3) = (5, 2, – 2)
⇒ `|(x - 1, y + 1, z - 0),(2, -2, 2),(5, 2, -2)|` = 0
⇒ (x – 1)(0) – (y + 1)(– 14) + z(4 + 10) = 0
⇒ 14(y + 1) + 14z = 0
⇒ 14y + 14 + 14z = 0
⇒ y + z + 1 = 0
APPEARS IN
RELATED QUESTIONS
Find the direction cosines of the normal to the plane 12x + 3y – 4z = 65. Also find the non-parametric form of vector equation of a plane and the length of the perpendicular to the plane from the origin
Find the intercepts cut off by the plane `vec"r"*(6hat"i" + 45hat"j" - 3hat"k")` = 12 on the coordinate axes
Find the non-parametric form of vector equation and Cartesian equation of the plane passing through the point (2, 3, 6) and parallel to thestraight lines `(x - 1)/2 = (y + 1)/3 = (x - 3)/1` and `(x + 3)/2 = (y - 3)/(-5) = (z + 1)/(-3)`
Find the parametric form of vector equation, and Cartesian equations of the plane containing the line `vec"r" = (hat"i" - hat"j" + 3hat"k") + "t"(2hat"i" - hat"j" + 4hat"k")` and perpendicular to plane `vec"r"*(hat"i" + 2hat"j" + hat"k")` = 8
Find the parametric vector, non-parametric vector and Cartesian form of the equation of the plane passing through the point (3, 6, – 2), (– 1, – 2, 6) and (6, 4, – 2)
If the straight lines `(x - 1)/1 - (y - 2)/2 = (z - 3)/"m"^2` and `(x - 3)/5 = (y - 2)/"m"^2 = (z - 1)/2` are coplanar, find the distinct real values of m
Choose the correct alternative:
If `vec"a", vec"b", vec"c"` are three unit vectors such that `vec"a"` is perpendicular to `vec"b"`, and is parallel to `vec"c"` then `vec"a" xx (vec"b" xx vec"c")` is equal to
Choose the correct alternative:
If `vec"a", vec"b", vec"c"` are three non-coplanar vectors such that `vec"a" xx (vec"b" xx vec"c") = (vec"b" + vec"c")/sqrt(2)` then the angle between `vec"a"` and `vec"b"` is
Choose the correct alternative:
Consider the vectors `vec"a", vec"b", vec"c", vec"d"` such that `(vec"a" xx vec"b") xx (vec"c" xx vec"d") = vec0`. Let P1 and P2 be the planes determined by the pairs of vectors `vec"a", vec"b"` and `vec'c", vec"d"` respectively. Then the angle between P1 and P2 is
Choose the correct alternative:
The angle between the lines `(x - 2)/3 = (y + 1)/(-2)`, z = 2 ad `(x - 1)/1 = (2y + 3)/3 = (z + 5)/2` is
Choose the correct alternative:
If the line `(x - )/3 = (y - 1)/(-5) = (x + 2)/2` lies in the plane x + 3y – αz + ß = 0 then (α + ß) is
Choose the correct alternative:
If the length of the perpendicular from the origin to the plane 2x + 3y + λz = 1, λ > 0 is `1/5, then the value of λ is
Let d be the distance between the foot of perpendiculars of the points P(1, 2, –1) and Q(2, –1, 3) on the plane –x + y + z = 1. Then d2 is equal to ______.
Let `(x - 2)/3 = (y + 1)/(-2) = (z + 3)/(-1)` lie on the plane px – qy + z = 5, for p, q ∈ R. The shortest distance of the plane from the origin is ______.
The equation of the plane passing through the point (1, 2, –3) and perpendicular to the planes 3x + y – 2z = 5 and 2x – 5y – z = 7, is ______.
The equation of a plane containing the line of intersection of the planes 2x – y – 4 = 0 and y + 2z – 4 = 0 and passing through the point (1, 1, 0) is ______.
Let (λ, 2, 1) be a point on the plane which passes through the point (4, –2, 2). If the plane is perpendicular to the line joining the points (–2, –21, 29) and (–1, –16, 23), then `(λ/11)^2 - (4λ)/11 - 4` is equal to ______.