English
Tamil Nadu Board of Secondary EducationHSC Science Class 12

Find the direction cosines of the normal to the plane 12x + 3y – 4z = 65. Also find the non-parametric form of vector equation of a plane and the length of the perpendicular to the plane from the - Mathematics

Advertisements
Advertisements

Question

Find the direction cosines of the normal to the plane 12x + 3y – 4z = 65. Also find the non-parametric form of vector equation of a plane and the length of the perpendicular to the plane from the origin

Sum

Solution

`vec"d" = 12hat"i" + 3hat"j" - 4hat"k"`

p = 65

`hat"d" = vec"d"/|vec"d"|`

= `(12hat"i" + 3hat"j" - 4hat"k")/sqrt(144 + 9 + 16)`

= `(12hat"i" + 3hat"j" - 4hat"k")/13`

`vec"r"*hat"d"` = p

`vec"r"* ((12hat"i" + 3hat"j" - 4hat"k")/13)`

= `(65/13)`

= 5

Direction cosines of `vec"d"` are `(12/13, 3/13, (-4)/13)` and Length of the ⊥r from the origin = 5 units.

shaalaa.com
Different Forms of Equation of a Plane
  Is there an error in this question or solution?
Chapter 6: Applications of Vector Algebra - Exercise 6.6 [Page 259]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 12 TN Board
Chapter 6 Applications of Vector Algebra
Exercise 6.6 | Q 2 | Page 259

RELATED QUESTIONS

Find the vector and Cartesian equation of the plane passing through the point with position vector `2hat"i" + 6hat"j" + 3hat"k"` and normal to the vector `hat"i" + 3hat"j" + 5hat"k"`


Find the non-parametric form of vector equation and Cartesian equation of the plane passing through the point (2, 3, 6) and parallel to thestraight lines `(x - 1)/2 = (y + 1)/3 = (x - 3)/1` and `(x + 3)/2 = (y - 3)/(-5) = (z + 1)/(-3)`


Find the parametric form of vector equation, and Cartesian equations of the plane passing through the points (2, 2, 1), (9, 3, 6) and perpendicular to the plane 2x + 6y + 6z = 9


Find the parametric form of vector equation, and Cartesian equations of the plane containing the line `vec"r" = (hat"i" - hat"j" + 3hat"k") + "t"(2hat"i" - hat"j" + 4hat"k")` and perpendicular to plane `vec"r"*(hat"i" + 2hat"j" + hat"k")` = 8


Find the non-parametric form of vector equation and Cartesian equations of the plane `vec"r" = (6hat"i" - hat"j" + hat"k") + "s"(-hat"i" + 2hat"j" + hat"k") + "t"(-5hat"i" - 4hat"j" - 5hat"k")`


Show that the straight lines `vec"r" = (5hat"i" + 7hat"j" - 3hat"k") + "s"(4hat"i" + 4hat"j" - 5hat"k")` and `vec"r"(8hat"i" + 4hat"j" + 5hat"k") + "t"(7hat"i" + hat"j" + 3hat"k")` are coplanar. Find the vector equation of the plane in which they lie


Show that the lines `(x - 2)/1 = (y - 3)/1 = (z - 4)/3` and `(x - 1)/(-3) = (y - 4)/2 = (z - 5)/1` are coplanar. Also, find the plane containing these lines


Choose the correct alternative:

If `vec"a" = 2hat"i" + 3hat"j" - hat"k", vec"b" = hat"i" + 2hat"j" - 5hat"k", vec"c" = 3hat"i" + 5hat"j" - hat"k"`, then a vector perpendicular to `vec"a"` and lies in the plane containing `vec"b"` and `vec"c"` is 


Choose the correct alternative:

The angle between the lines `(x - 2)/3 = (y + 1)/(-2)`, z = 2 ad `(x - 1)/1 = (2y + 3)/3 = (z + 5)/2` is


Choose the correct alternative:

The angle between the line `vec"r" = (hat"i" + 2hat"j" - 3hat"k") + "t"(2hat"i" + hat"j" - 2hat"k")` and the plane `vec"r"(hat"i" + hat"j") + 4` = 0 is


Choose the correct alternative:

Distance from the origin to the plane 3x – 6y + 2z + 7 = 0 is


Choose the correct alternative:

If the distance of the point (1, 1, 1) from the origin is half of its distance from the plane x + y + z + k = 0, then the values of k are


Choose the correct alternative:

If the length of the perpendicular from the origin to the plane 2x + 3y + λz = 1, λ > 0 is `1/5, then the value of λ is


Let d be the distance between the foot of perpendiculars of the points P(1, 2, –1) and Q(2, –1, 3) on the plane –x + y + z = 1. Then d2 is equal to ______.


The plane passing through the points (1, 2, 1), (2, 1, 2) and parallel to the line, 2x = 3y, z = 1 also passes through the point ______.


The point in which the join of (–9, 4, 5) and (11, 0, –1) is met by the perpendicular from the origin is ______.


A point moves in such a way that sum of squares of its distances from the co-ordinate axis is 36, then distance of then given point from origin are ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×