English
Tamil Nadu Board of Secondary EducationHSC Science Class 12

Find the parametric form of vector equation, and Cartesian equations of the plane passing through the points (2, 2, 1), (9, 3, 6) and perpendicular to the plane 2x + 6y + 6z = 9 - Mathematics

Advertisements
Advertisements

Question

Find the parametric form of vector equation, and Cartesian equations of the plane passing through the points (2, 2, 1), (9, 3, 6) and perpendicular to the plane 2x + 6y + 6z = 9

Sum

Solution

The required plane passes through the points

`vec"a" = 2vec"i" + 2vec"j" + vec"k"`

`vec"b" = 9vec"i" + 3vec"j" + 6vec"k"`

And parallel to the vector `vec"c" = 2vec"i" + 6vec"j" + 6vec"k"` 

`vec"b" - vec"a" = (9vec"i" + 3vec"j" + 6vec"k") - (2vec"i" + 2vec"j" + vec"k")`

= `4vec"i" + vec"j" + 5vec"k"`

Nom-aprametric form of vector equation

`(vec"r" - vec"a")*((vec"b" - vec"a") xx vec"c")` = 0

`(vec"b" - vec"a") xx vec"c" = |(vec"i", vec"j", vec"k"),(7, 1, 5),(, 6, 6)|`

= `vec"i"(6 - 30) - vec"j"(42 - 10) + vec"k"(42 - 2)`

= `- 24hat"i" - 32hat"j" + 40hat"k"`

(1) ⇒ `(vec"r" - vec"a")*(-24hat"i" - 32hat"j" + 40hat"k")` = 0

`vec"r"*(-24hat"i" - 32hat"j" + 40hat"k") = vec"a"*(-24vec"i" - 32vec"j" + 40vec"k")`

`"r"*(24vec"i" - 32vec"j" + 40vec"k") = (2vec"i" + 2vec"j" + vec"k")(-24vec"i" - 32vec"j" + 40vec"k")`

`vec"r"*(-24hat"i" - 32hat"j" + 40hat"k") = - 48 - 64 + 40`

`-8[vec"r"*(3hat"i" + 4hat"j" - 5hat"k")]` = – 72

`vec"r"*(3hat"i" + 4hat"j" - 5hat"k")` = 9

Cartesian equation

`(xvec"i" + yvec"j" + xvec"k")*(3vec"i" + 4vec"j" - 5vec"k")` = 9

`3x + 4y - 5z - 9` = 0

shaalaa.com
Different Forms of Equation of a Plane
  Is there an error in this question or solution?
Chapter 6: Applications of Vector Algebra - Exercise 6.7 [Page 263]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 12 TN Board
Chapter 6 Applications of Vector Algebra
Exercise 6.7 | Q 2 | Page 263

RELATED QUESTIONS

Find the vector and Cartesian equation of the plane passing through the point with position vector `2hat"i" + 6hat"j" + 3hat"k"` and normal to the vector `hat"i" + 3hat"j" + 5hat"k"`


Find the parametric form of vector equation, and Cartesian equations of the plane containing the line `vec"r" = (hat"i" - hat"j" + 3hat"k") + "t"(2hat"i" - hat"j" + 4hat"k")` and perpendicular to plane `vec"r"*(hat"i" + 2hat"j" + hat"k")` = 8


Find the parametric vector, non-parametric vector and Cartesian form of the equation of the plane passing through the point (3, 6, – 2), (– 1, – 2, 6) and (6, 4, – 2)


Find the non-parametric form of vector equation and Cartesian equations of the plane `vec"r" = (6hat"i" - hat"j" + hat"k") + "s"(-hat"i" + 2hat"j" + hat"k") + "t"(-5hat"i" - 4hat"j" - 5hat"k")`


Show that the straight lines `vec"r" = (5hat"i" + 7hat"j" - 3hat"k") + "s"(4hat"i" + 4hat"j" - 5hat"k")` and `vec"r"(8hat"i" + 4hat"j" + 5hat"k") + "t"(7hat"i" + hat"j" + 3hat"k")` are coplanar. Find the vector equation of the plane in which they lie


Show that the lines `(x - 2)/1 = (y - 3)/1 = (z - 4)/3` and `(x - 1)/(-3) = (y - 4)/2 = (z - 5)/1` are coplanar. Also, find the plane containing these lines


Choose the correct alternative:

If `vec"a", vec"b", vec"c"` are three unit vectors such that `vec"a"` is perpendicular to `vec"b"`, and is parallel to `vec"c"` then `vec"a" xx (vec"b" xx vec"c")` is equal to


Choose the correct alternative:

If `vec"a", vec"b", vec"c"` are three non-coplanar vectors such that `vec"a" xx (vec"b" xx vec"c") = (vec"b" + vec"c")/sqrt(2)` then the angle between `vec"a"` and `vec"b"` is


Choose the correct alternative:

If `vec"a" = 2hat"i" + 3hat"j" - hat"k", vec"b" = hat"i" + 2hat"j" - 5hat"k", vec"c" = 3hat"i" + 5hat"j" - hat"k"`, then a vector perpendicular to `vec"a"` and lies in the plane containing `vec"b"` and `vec"c"` is 


Choose the correct alternative:

If the line `(x  - )/3 = (y - 1)/(-5) = (x + 2)/2` lies in the plane x + 3y – αz + ß = 0 then (α + ß) is


Choose the correct alternative:

The angle between the line `vec"r" = (hat"i" + 2hat"j" - 3hat"k") + "t"(2hat"i" + hat"j" - 2hat"k")` and the plane `vec"r"(hat"i" + hat"j") + 4` = 0 is


Choose the correct alternative:

Distance from the origin to the plane 3x – 6y + 2z + 7 = 0 is


Choose the correct alternative:

If the distance of the point (1, 1, 1) from the origin is half of its distance from the plane x + y + z + k = 0, then the values of k are


Choose the correct alternative:

If the planes `vec"r"(2hat"i" - lambdahat"j" + hatk")` =  and `vec"r"(4hat"i" + hat"j" - muhat"k")` = 5 are parallel, then the value of λ and µ are


Let `(x - 2)/3 = (y + 1)/(-2) = (z + 3)/(-1)` lie on the plane px – qy + z = 5, for p, q ∈ R. The shortest distance of the plane from the origin is ______.


The point in which the join of (–9, 4, 5) and (11, 0, –1) is met by the perpendicular from the origin is ______.


Consider a plane 2x + y – 3z = 5 and the point P(–1, 3, 2). A line L has the equation `(x - 2)/3 = (y - 1)/2 = (z - 3)/4`. The co-ordinates of a point Q of the line L such that `vec(PQ)` is parallel to the given plane are (α, β, γ), then the product βγ is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×