English
Tamil Nadu Board of Secondary EducationHSC Science Class 12

Find the non-parametric form of vector equation and Cartesian equation of the plane passing through the point (2, 3, 6) and parallel to thestraight lines x-12=y+13=x-31 and x+32=y-3-5=z+1-3 - Mathematics

Advertisements
Advertisements

Question

Find the non-parametric form of vector equation and Cartesian equation of the plane passing through the point (2, 3, 6) and parallel to thestraight lines `(x - 1)/2 = (y + 1)/3 = (x - 3)/1` and `(x + 3)/2 = (y - 3)/(-5) = (z + 1)/(-3)`

Sum

Solution

`vec"a" = 2hat"i" + 3hat"j" + 6hat"k"`

`vec"b" = 2hat"i" + 3hat"j" + hat"k"`

`vec"c" = 2hat"i" - 5hat"j" - 3hat"k"`

Non-parametric form of vector equation

`(vec"r" - vec"a")*(vec"b" xx vec"c")` = 0

`vec"b" xx vec"c" = |(hat"i", hat"j", hat"k"),(2, 3, 1),(2, -5, -3)|`

= `hat"i"(- 9 + 5) -hat"j"(- 6 - 2) + hat"k"(- 10 - 6)`

= `- 4hat"i" + 8hat"j" - 16hat"k"`

= `-4(hat"i" - 2hat"j" + 4hat"k")`

`[vec"r" - (2hat"i" + 3hat"j" + 6hat"k")]*[hat"i" + 2hat"j" + 4hat"k"]` = 0

`vec"r"*(hat"i" - 2hat"j" + 4hat"k") = 2 - 6 + 24`

`vec"r"*(hat"i" - 2hat"j" + 4hat"k")` = 20

Cartesian equation

`(xhat"i" + yhat"j" + zhat"k")*(hat"i" - 2hat"j" + 4hat"k")` = 20

`x - 2y + 4z - 20` = 0

shaalaa.com
Different Forms of Equation of a Plane
  Is there an error in this question or solution?
Chapter 6: Applications of Vector Algebra - Exercise 6.7 [Page 263]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 12 TN Board
Chapter 6 Applications of Vector Algebra
Exercise 6.7 | Q 1 | Page 263

RELATED QUESTIONS

Find the direction cosines of the normal to the plane 12x + 3y – 4z = 65. Also find the non-parametric form of vector equation of a plane and the length of the perpendicular to the plane from the origin


Find the vector and Cartesian equation of the plane passing through the point with position vector `2hat"i" + 6hat"j" + 3hat"k"` and normal to the vector `hat"i" + 3hat"j" + 5hat"k"`


A plane passes through the point (− 1, 1, 2) and the normal to the plane of magnitude `3sqrt(3)` makes equal acute angles with the coordinate axes. Find the equation of the plane


If a plane meets the co-ordinate axes at A, B, C such that the centroid of the triangle ABC is the point (u, v, w), find the equation of the plane


Find the parametric form of vector equation and Cartesian equations of the plane passing through the points (2, 2, 1), (1, – 2, 3) and parallel to the straight line passing through the points (2, 1, – 3) and (– 1, 5, – 8)


Find the non-parametric form of vector equation and cartesian equation of the plane passing through the point (1, − 2, 4) and perpendicular to the plane x + 2y − 3z = 11 and parallel to the line `(x + 7)/3 = (y + 3)/(-1) = z/1`


Find the parametric form of vector equation, and Cartesian equations of the plane containing the line `vec"r" = (hat"i" - hat"j" + 3hat"k") + "t"(2hat"i" - hat"j" + 4hat"k")` and perpendicular to plane `vec"r"*(hat"i" + 2hat"j" + hat"k")` = 8


Find the parametric vector, non-parametric vector and Cartesian form of the equation of the plane passing through the point (3, 6, – 2), (– 1, – 2, 6) and (6, 4, – 2)


Show that the lines `(x - 2)/1 = (y - 3)/1 = (z - 4)/3` and `(x - 1)/(-3) = (y - 4)/2 = (z - 5)/1` are coplanar. Also, find the plane containing these lines


If the straight lines `(x - 1)/1 - (y - 2)/2 = (z - 3)/"m"^2` and `(x - 3)/5 = (y - 2)/"m"^2 = (z - 1)/2` are coplanar, find the distinct real values of m


If the straight lines `(x - 1)/2 = (y + 1)/lambda = z/2` and `(x + 1)/5 = (y + 1)/2 = z/lambda` are coplanar, find λ and equations of the planes containing these two lines


Choose the correct alternative:

The volume of the parallelepiped with its edges represented by the vectors `hat"i" + hat"j", hat"i" + 2hat"j", hat"i" + hat"j" + pihat"k"` is


Choose the correct alternative:

Consider the vectors  `vec"a", vec"b", vec"c", vec"d"` such that `(vec"a" xx vec"b") xx (vec"c" xx vec"d") = vec0`. Let P1 and P2 be the planes determined by the pairs of vectors `vec"a", vec"b"` and `vec'c", vec"d"` respectively. Then the angle between P1 and P2 is


Let d be the distance between the foot of perpendiculars of the points P(1, 2, –1) and Q(2, –1, 3) on the plane –x + y + z = 1. Then d2 is equal to ______.


The equation of the plane passing through the point (1, 2, –3) and perpendicular to the planes 3x + y – 2z = 5 and 2x – 5y – z = 7, is ______.


The plane passing through the points (1, 2, 1), (2, 1, 2) and parallel to the line, 2x = 3y, z = 1 also passes through the point ______.


Consider a plane 2x + y – 3z = 5 and the point P(–1, 3, 2). A line L has the equation `(x - 2)/3 = (y - 1)/2 = (z - 3)/4`. The co-ordinates of a point Q of the line L such that `vec(PQ)` is parallel to the given plane are (α, β, γ), then the product βγ is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×