मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता १२

Find the non-parametric form of vector equation and Cartesian equation of the plane passing through the point (2, 3, 6) and parallel to thestraight lines x-12=y+13=x-31 and x+32=y-3-5=z+1-3 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the non-parametric form of vector equation and Cartesian equation of the plane passing through the point (2, 3, 6) and parallel to thestraight lines `(x - 1)/2 = (y + 1)/3 = (x - 3)/1` and `(x + 3)/2 = (y - 3)/(-5) = (z + 1)/(-3)`

बेरीज

उत्तर

`vec"a" = 2hat"i" + 3hat"j" + 6hat"k"`

`vec"b" = 2hat"i" + 3hat"j" + hat"k"`

`vec"c" = 2hat"i" - 5hat"j" - 3hat"k"`

Non-parametric form of vector equation

`(vec"r" - vec"a")*(vec"b" xx vec"c")` = 0

`vec"b" xx vec"c" = |(hat"i", hat"j", hat"k"),(2, 3, 1),(2, -5, -3)|`

= `hat"i"(- 9 + 5) -hat"j"(- 6 - 2) + hat"k"(- 10 - 6)`

= `- 4hat"i" + 8hat"j" - 16hat"k"`

= `-4(hat"i" - 2hat"j" + 4hat"k")`

`[vec"r" - (2hat"i" + 3hat"j" + 6hat"k")]*[hat"i" + 2hat"j" + 4hat"k"]` = 0

`vec"r"*(hat"i" - 2hat"j" + 4hat"k") = 2 - 6 + 24`

`vec"r"*(hat"i" - 2hat"j" + 4hat"k")` = 20

Cartesian equation

`(xhat"i" + yhat"j" + zhat"k")*(hat"i" - 2hat"j" + 4hat"k")` = 20

`x - 2y + 4z - 20` = 0

shaalaa.com
Different Forms of Equation of a Plane
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Applications of Vector Algebra - Exercise 6.7 [पृष्ठ २६३]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
पाठ 6 Applications of Vector Algebra
Exercise 6.7 | Q 1 | पृष्ठ २६३

संबंधित प्रश्‍न

A plane passes through the point (− 1, 1, 2) and the normal to the plane of magnitude `3sqrt(3)` makes equal acute angles with the coordinate axes. Find the equation of the plane


Find the intercepts cut off by the plane `vec"r"*(6hat"i" + 45hat"j" - 3hat"k")` = 12 on the coordinate axes


Find the parametric form of vector equation, and Cartesian equations of the plane passing through the points (2, 2, 1), (9, 3, 6) and perpendicular to the plane 2x + 6y + 6z = 9


Find the non-parametric form of vector equation and cartesian equation of the plane passing through the point (1, − 2, 4) and perpendicular to the plane x + 2y − 3z = 11 and parallel to the line `(x + 7)/3 = (y + 3)/(-1) = z/1`


If the straight lines `(x - 1)/2 = (y + 1)/lambda = z/2` and `(x + 1)/5 = (y + 1)/2 = z/lambda` are coplanar, find λ and equations of the planes containing these two lines


Choose the correct alternative:

If `vec"a", vec"b", vec"c"` are three unit vectors such that `vec"a"` is perpendicular to `vec"b"`, and is parallel to `vec"c"` then `vec"a" xx (vec"b" xx vec"c")` is equal to


Choose the correct alternative:

If `vec"a", vec"b", vec"c"` are three non-coplanar vectors such that `vec"a" xx (vec"b" xx vec"c") = (vec"b" + vec"c")/sqrt(2)` then the angle between `vec"a"` and `vec"b"` is


Choose the correct alternative:

Consider the vectors  `vec"a", vec"b", vec"c", vec"d"` such that `(vec"a" xx vec"b") xx (vec"c" xx vec"d") = vec0`. Let P1 and P2 be the planes determined by the pairs of vectors `vec"a", vec"b"` and `vec'c", vec"d"` respectively. Then the angle between P1 and P2 is


Choose the correct alternative:

If `vec"a" = 2hat"i" + 3hat"j" - hat"k", vec"b" = hat"i" + 2hat"j" - 5hat"k", vec"c" = 3hat"i" + 5hat"j" - hat"k"`, then a vector perpendicular to `vec"a"` and lies in the plane containing `vec"b"` and `vec"c"` is 


Choose the correct alternative:

If the line `(x  - )/3 = (y - 1)/(-5) = (x + 2)/2` lies in the plane x + 3y – αz + ß = 0 then (α + ß) is


Choose the correct alternative:

The distance between the planes x + 2y + 3z + 7 = 0 and 2x + 4y + 6z + 7 = 0 is


Choose the correct alternative:

If the length of the perpendicular from the origin to the plane 2x + 3y + λz = 1, λ > 0 is `1/5, then the value of λ is


Let d be the distance between the foot of perpendiculars of the points P(1, 2, –1) and Q(2, –1, 3) on the plane –x + y + z = 1. Then d2 is equal to ______.


Let `(x - 2)/3 = (y + 1)/(-2) = (z + 3)/(-1)` lie on the plane px – qy + z = 5, for p, q ∈ R. The shortest distance of the plane from the origin is ______.


The plane passing through the points (1, 2, 1), (2, 1, 2) and parallel to the line, 2x = 3y, z = 1 also passes through the point ______.


The equation of a plane containing the line of intersection of the planes 2x – y – 4 = 0 and y + 2z – 4 = 0 and passing through the point (1, 1, 0) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×