Advertisements
Advertisements
Question
Show that the straight lines `vec"r" = (5hat"i" + 7hat"j" - 3hat"k") + "s"(4hat"i" + 4hat"j" - 5hat"k")` and `vec"r"(8hat"i" + 4hat"j" + 5hat"k") + "t"(7hat"i" + hat"j" + 3hat"k")` are coplanar. Find the vector equation of the plane in which they lie
Solution
Let `vec"a" = 5hat"i" + 7hat"j" - 3hat"k"`
`vec"b" = 4hat"i" + 4hat"j" - 5hat"k"`
`vec"c" = 8hat"i" + 4hat"j" + 5hat"k"`
`vec"d" = 7hat"i" + hat"j" + 3hat"k"`
We know that given two lines are coplanar if
`(vec"c" - vec"a")*(vec"b" xx vec"d")` = 0 ......(1)
`vec"b" xx vec"d" = |(vec"i", vec"j", vec"k"),(4, 4, -5),(7, 1, 3)|`
= `vec"i"(12 + 5) - vec"j"(12 + 35) + vec"k"(4 - 28)`
`vec"b" xx vec"d" = 17hat"i" - 47hat"j" - 24hat"k"`
`vec"c" - vec"a" = (8hat"i" + 4hat"j" + 5hat"k") - (5hat"i" + 7hat"j" - 3hat"k") = 3hat"i" - 3hat"j" + 8hat"k"`
(1) ⇒ `(3hat"i" - 3hat"j" + 8hat"k")*(17hat"i" - 47hat"j" - 24hat"k")` = 51 + 141 – 192 = 0
∴ The two given lines are colpanar so, the non-parametric vector equation is
`(vec"r" - vec"a")*(vec"b" xx vec"d")` = 0
`vec"r"*(vec"b" xx vec"d") = vec"a"*(vec"b" xx vec"d")`
`vec"r"*(17vec"i" - 47vec"j" - 24vec"k") = (5vec"i" + 7vec"j" - 3vec"k")(17vec"i" - 47vec"j" - 24vec"k")`
`vec"r"*(17vec"i" - 47vec"j" - 24vec"k")` = 85 – 329 + 72
⇒ `vec"r"*(17vec"i" - 47vec"j" - 24vec"k")` = – 172
APPEARS IN
RELATED QUESTIONS
Find a parametric form of vector equation of a plane which is at a distance of 7 units from t the origin having 3, – 4, 5 as direction ratios of a normal to it
Find the vector and Cartesian equation of the plane passing through the point with position vector `2hat"i" + 6hat"j" + 3hat"k"` and normal to the vector `hat"i" + 3hat"j" + 5hat"k"`
A plane passes through the point (− 1, 1, 2) and the normal to the plane of magnitude `3sqrt(3)` makes equal acute angles with the coordinate axes. Find the equation of the plane
If a plane meets the co-ordinate axes at A, B, C such that the centroid of the triangle ABC is the point (u, v, w), find the equation of the plane
Find the non-parametric form of vector equation and Cartesian equation of the plane passing through the point (2, 3, 6) and parallel to thestraight lines `(x - 1)/2 = (y + 1)/3 = (x - 3)/1` and `(x + 3)/2 = (y - 3)/(-5) = (z + 1)/(-3)`
Find the non-parametric form of vector equation and cartesian equation of the plane passing through the point (1, − 2, 4) and perpendicular to the plane x + 2y − 3z = 11 and parallel to the line `(x + 7)/3 = (y + 3)/(-1) = z/1`
Find the parametric form of vector equation, and Cartesian equations of the plane containing the line `vec"r" = (hat"i" - hat"j" + 3hat"k") + "t"(2hat"i" - hat"j" + 4hat"k")` and perpendicular to plane `vec"r"*(hat"i" + 2hat"j" + hat"k")` = 8
Find the non-parametric form of vector equation and Cartesian equations of the plane `vec"r" = (6hat"i" - hat"j" + hat"k") + "s"(-hat"i" + 2hat"j" + hat"k") + "t"(-5hat"i" - 4hat"j" - 5hat"k")`
Choose the correct alternative:
If `vec"a"` and `vec"b"` are unit vectors such that `[vec"a", vec"b", vec"a" xx vec"b"] = 1/4`, are unit vectors such that `vec"a"` nad `vec"b"` is
Choose the correct alternative:
Consider the vectors `vec"a", vec"b", vec"c", vec"d"` such that `(vec"a" xx vec"b") xx (vec"c" xx vec"d") = vec0`. Let P1 and P2 be the planes determined by the pairs of vectors `vec"a", vec"b"` and `vec'c", vec"d"` respectively. Then the angle between P1 and P2 is
Choose the correct alternative:
If the line `(x - )/3 = (y - 1)/(-5) = (x + 2)/2` lies in the plane x + 3y – αz + ß = 0 then (α + ß) is
Choose the correct alternative:
If the distance of the point (1, 1, 1) from the origin is half of its distance from the plane x + y + z + k = 0, then the values of k are
Choose the correct alternative:
If the planes `vec"r"(2hat"i" - lambdahat"j" + hatk")` = and `vec"r"(4hat"i" + hat"j" - muhat"k")` = 5 are parallel, then the value of λ and µ are
Choose the correct alternative:
If the length of the perpendicular from the origin to the plane 2x + 3y + λz = 1, λ > 0 is `1/5, then the value of λ is
Let d be the distance between the foot of perpendiculars of the points P(1, 2, –1) and Q(2, –1, 3) on the plane –x + y + z = 1. Then d2 is equal to ______.
Consider a plane 2x + y – 3z = 5 and the point P(–1, 3, 2). A line L has the equation `(x - 2)/3 = (y - 1)/2 = (z - 3)/4`. The co-ordinates of a point Q of the line L such that `vec(PQ)` is parallel to the given plane are (α, β, γ), then the product βγ is ______.
Let (λ, 2, 1) be a point on the plane which passes through the point (4, –2, 2). If the plane is perpendicular to the line joining the points (–2, –21, 29) and (–1, –16, 23), then `(λ/11)^2 - (4λ)/11 - 4` is equal to ______.