Advertisements
Advertisements
प्रश्न
Compute the mode from the following data:
Age (in years) | 0 – 5 | 5 – 10 | 10 – 15 | 15 – 20 | 20 – 25 | 25 – 30 | 30 - 35 |
No of patients | 6 | 11 | 18 | 24 | 17 | 13 | 5 |
उत्तर
As the class 15 – 20 has the maximum frequency, it is the modal class.
Now, `x_k= 15, h = 5, f_k = 24, f_k-1 = 18, f_k+1 = 17`
∴ Mode, `M_0 = x_k + {ℎ ×((f_k− f_k−1))/((2f_k− f_k−1−f_k+1))}`
`= 15 + {5 × ((24−18))/((2×24−18−17))}`
`= 15 + {5 × 6/13}`
= (15 + 2.3)
= 17.3
Hence, mode = 17.3 years
APPEARS IN
संबंधित प्रश्न
Find the mode of the following data:
3, 3, 7, 4, 5, 3, 5, 6, 8, 9, 5, 3, 5, 3, 6, 9, 7, 4
The shirt sizes worn by a group of 200 persons, who bought the shirt from a store, are as follows:
Shirt size: | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 |
Number of persons: | 15 | 25 | 39 | 41 | 36 | 17 | 15 | 12 |
Find the model shirt size worn by the group.
Find the mode of the following distribution.
Class-interval: | 25 - 30 | 30 - 35 | 35 - 40 | 40 - 45 | 45 - 50 | 50 - 55 |
Frequency: | 25 | 34 | 50 | 42 | 38 | 14 |
One of the methods of determining mode is ______.
If the mode of the data: 16, 15, 17, 16, 15, x, 19, 17, 14 is 15, then x =
The monthly salary of 10 employees in a factory are given below:
₹ 5000, ₹ 7000, ₹ 5000, ₹ 7000, ₹ 8000, ₹ 7000, ₹ 7000, ₹ 8000, ₹ 7000, ₹ 5000
Find the mean, median and mode
If xi's are the midpoints of the class intervals of grouped data, fi's are the corresponding frequencies and `barx` is the mean, then `sum(f_ix_i-barx)` is equal to ______.
Construction of a cumulative frequency table is useful in determining the ______.
For the following distribution
C.l. | 0 - 5 | 5 - 10 | 10 - 15 | 15 - 20 | 20 - 25 |
f | 10 | 15 | 12 | 20 | 9 |
the difference of the upper limit of the median class and the lower limit of the modal class is?
The frequency distribution of daily working expenditure of families in a locality is as follows:
Expenditure in ₹ (x): |
0 – 50 | 50 – 100 | 100 – 150 | 150 – 200 | 200 – 250 |
No. of families (f): |
24 | 33 | 37 | b | 25 |
If the mode of the distribution is ₹ 140 then the value of b is ______.