Advertisements
Advertisements
Question
Compute the mode from the following data:
Age (in years) | 0 – 5 | 5 – 10 | 10 – 15 | 15 – 20 | 20 – 25 | 25 – 30 | 30 - 35 |
No of patients | 6 | 11 | 18 | 24 | 17 | 13 | 5 |
Solution
As the class 15 – 20 has the maximum frequency, it is the modal class.
Now, `x_k= 15, h = 5, f_k = 24, f_k-1 = 18, f_k+1 = 17`
∴ Mode, `M_0 = x_k + {ℎ ×((f_k− f_k−1))/((2f_k− f_k−1−f_k+1))}`
`= 15 + {5 × ((24−18))/((2×24−18−17))}`
`= 15 + {5 × 6/13}`
= (15 + 2.3)
= 17.3
Hence, mode = 17.3 years
APPEARS IN
RELATED QUESTIONS
A student noted the number of cars passing through a spot on a road for 100 periods each of 3 minutes and summarised it in the table given below. Find the mode of the data.
Number of cars | 0 − 10 | 10 − 20 | 20 − 30 | 30 − 40 | 40 − 50 | 50 − 60 | 60 − 70 | 70 − 80 |
Frequency | 7 | 14 | 13 | 12 | 20 | 11 | 15 | 8 |
The following frequency distribution gives the monthly consumption of electricity of 68 consumers of a locality. Find the median, mean and mode of the data and compare them.
Monthly consumption (in units) | Number of consumers |
65 - 85 | 4 |
85 - 105 | 5 |
105 - 125 | 13 |
125 - 145 | 20 |
145 - 165 | 14 |
165 - 185 | 8 |
185 - 205 | 4 |
Compare the modal ages of two groups of students appearing for an entrance test:
Age (in years): | 16-18 | 18-20 | 20-22 | 22-24 | 24-26 |
Group A: | 50 | 78 | 46 | 28 | 23 |
Group B: | 54 | 89 | 40 | 25 | 17 |
Find the mean, median and mode of the following data:
Classes: | 0-20 | 20-40 | 40-60 | 40-60 | 80-100 | 100-120 | 120-140 |
Frequency: | 6 | 8 | 10 | 12 | 6 | 5 | 3 |
Compute the mode of the following data:
Class | 0 – 20 | 20 – 40 | 40 – 60 | 60 – 80 | 80 – 100 |
Frequency | 25 | 16 | 28 | 20 | 5 |
The agewise participation of students in the annual function of a school is shown in the following distribution.
Age (in years) | 5 - 7 | 7 - 9 | 9 - 11 | 11 – 13 | 13 – 15 | 15 – 17 | 17 – 19 |
Number of students | x | 15 | 18 | 30 | 50 | 48 | x |
Find the missing frequencies when the sum of frequencies is 181. Also find the mode of the data.
Calculate the mode of the following distribution:
Class | 10 − 15 | 15 − 20 | 20 − 25 | 25 − 30 | 30 − 35 |
Frequency | 4 | 7 | 20 | 8 | 1 |
Find the mode of the following distribution:
Weight (in kgs) | 25 − 34 | 35 − 44 | 45 − 54 | 55 − 64 | 65 − 74 | 75 − 84 |
Number of students | 4 | 8 | 10 | 14 | 8 | 6 |
For the following distribution
Monthly Expenditure (Rs.) | No. of families |
Expenditure less than Rs. 10,000 | 15 |
Expenditure les than Rs. 13,000 | 31 |
Expenditure les than Rs. 16,000 | 50 |
Expenditure les than Rs. 19,000 | 67 |
Expenditure les than Rs. 22,000 | 85 |
Expenditure les than Rs. 25,000 | 100 |
The number of families having expenditure range (in ?) 16,000 - 19,000 is?
For the following distribution:
Class | 0 – 5 | 5 – 10 | 10 – 15 | 15 – 20 | 20 – 25 |
Frequency | 10 | 15 | 12 | 20 | 9 |
The sum of lower limits of the median class and modal class is: