Topics
Number Systems
Real Numbers
Algebra
Polynomials
Pair of Linear Equations in Two Variables
- Introduction to linear equations in two variables
- Graphical Method
- Substitution Method
- Elimination Method
- Cross - Multiplication Method
- Equations Reducible to a Pair of Linear Equations in Two Variables
- Consistency of Pair of Linear Equations
- Inconsistency of Pair of Linear Equations
- Algebraic Conditions for Number of Solutions
- Simple Situational Problems
- Pair of Linear Equations in Two Variables
- Relation Between Co-efficient
Quadratic Equations
- Quadratic Equations
- Solutions of Quadratic Equations by Factorization
- Solutions of Quadratic Equations by Completing the Square
- Nature of Roots of a Quadratic Equation
- Relationship Between Discriminant and Nature of Roots
- Situational Problems Based on Quadratic Equations Related to Day to Day Activities to Be Incorporated
- Application of Quadratic Equation
Arithmetic Progressions
Coordinate Geometry
Lines (In Two-dimensions)
Constructions
- Division of a Line Segment
- Construction of Tangents to a Circle
- Constructions Examples and Solutions
Geometry
Triangles
- Similar Figures
- Similarity of Triangles
- Basic Proportionality Theorem (Thales Theorem)
- Criteria for Similarity of Triangles
- Areas of Similar Triangles
- Right-angled Triangles and Pythagoras Property
- Similarity of Triangles
- Application of Pythagoras Theorem in Acute Angle and Obtuse Angle
- Triangles Examples and Solutions
- Concept of Angle Bisector
- Similarity of Triangles
- Ratio of Sides of Triangle
Circles
Trigonometry
Introduction to Trigonometry
- Trigonometry
- Trigonometry
- Trigonometric Ratios
- Trigonometric Ratios and Its Reciprocal
- Trigonometric Ratios of Some Special Angles
- Trigonometric Ratios of Complementary Angles
- Trigonometric Identities
- Proof of Existence
- Relationships Between the Ratios
Trigonometric Identities
Some Applications of Trigonometry
Mensuration
Areas Related to Circles
- Perimeter and Area of a Circle - A Review
- Areas of Sector and Segment of a Circle
- Areas of Combinations of Plane Figures
- Circumference of a Circle
- Area of Circle
Surface Areas and Volumes
- Surface Area of a Combination of Solids
- Volume of a Combination of Solids
- Conversion of Solid from One Shape to Another
- Frustum of a Cone
- Concept of Surface Area, Volume, and Capacity
- Surface Area and Volume of Different Combination of Solid Figures
- Surface Area and Volume of Three Dimensional Figures
Statistics and Probability
Statistics
Probability
Internal Assessment
Notes
The mode of a list of data values is simply the most common value. Eg. find the mode of the ungrouped data 2, 3, 4, 4, 3, 9, 6, 3, 5, 3
Here the mode is 4 because the highest frequently occured number is 4.
But this was about ungrouped data. In this concept we will learn to find mode of a grouped data. The mode of a grouped data is found with the help of formula.
Mode= `l+ [(f1-fo)/ (2f1-fo-f2)] xx h`
where, l= lower limit of modal class
f1= frequency of the modal class
fo i.e f not= frequency of the class preceeding the modal class
f2= frequency of the class succeeding the modal class
h= Class size= Upper limit- Lower limit
Let's take a example for better understanding,
Find the mode of the given data:
Family size |
1-3 |
3-5 |
5-7 |
7-9 |
9-11 |
No. of families |
7 |
8 |
2 |
2 |
1 |
Solution:
The maximum frequency is 8
Therefore, Modal class= 3-5,
then l= 3, h=2, f1=8, fo=7, f=2
`Mode= l+ [(f1-fo)/ (2f1-fo-f2)] xx h`
= `3+ [(8-7)/ (16-7-2)] xx 2`
= `3+ (1 xx 2)/7`
= `3+ 0.285`
Mode= 3.285
Related QuestionsVIEW ALL [84]
For the following distribution:
Class | 0 – 5 | 5 – 10 | 10 – 15 | 15 – 20 | 20 – 25 |
Frequency | 10 | 15 | 12 | 20 | 9 |
The lower limit of modal class is:
The mode of the following data is:
xi | 10 | 14 | 18 | 21 | 25 |
fi | 10 | 15 | 7 | 9 | 9 |
Find the mode of the following data:
Marks | 0 − 10 | 10 − 20 | 20 − 30 | 30 − 40 | 40 − 50 |
Number of students | 22 | 38 | 46 | 34 | 20 |
The following is the distribution of height of students of a certain class in a certain city:
Height (in cm): | 160 - 162 | 163 - 165 | 166 - 168 | 169 - 171 | 172 - 174 |
No. of students: | 15 | 118 | 142 | 127 | 18 |
Find the average height of maximum number of students.
The marks in science of 80 students of class X are given below: Find the mode of the marks obtained by the students in science.
Marks: | 0 - 10 | 10 - 20 | 20 - 30 | 30 - 40 | 40 - 50 | 50 - 60 | 60 - 70 | 70 - 80 | 80 - 90 | 90 - 100 |
Frequency: | 3 | 5 | 16 | 12 | 13 | 20 | 5 | 4 | 1 | 1 |
Find out the mode from the following data:
Wages (in ₹) | No. of persons |
125 | 3 |
175 | 8 |
225 | 21 |
275 | 6 |
325 | 4 |
375 | 2 |
For the following distribution
C.I. | 0 - 10 | 10 - 20 | 20 - 30 | 30 - 40 | 40 - 50 |
F | 20 | 30 | 24 | 40 | 18 |
the sum of lower limits of the modal class and the median class is?
The frequency distribution of daily working expenditure of families in a locality is as follows:
Expenditure in ₹ (x): |
0 – 50 | 50 – 100 | 100 – 150 | 150 – 200 | 200 – 250 |
No. of families (f): |
24 | 33 | 37 | b | 25 |
If the mode of the distribution is ₹ 140 then the value of b is ______.