Advertisements
Advertisements
प्रश्न
Consider the fusion in helium plasma. Find the temperature at which the average thermal energy 1.5 kT equals the Coulomb potential energy at 2 fm.
उत्तर
Given:-
Average thermal energy, E = 1.5 kT
Point of coulomb potential energy = 2 fm
Potential energy is given by
`U = (Kq_1q_2)/r ......(1)`
Here , `K = 1/(4pi∈_0) = 9 xx 10^9`
Charge , `q_1 = q_2 = 2 xx 1.6 xx 10^-19 C`
Average kinetic energy (E) is given by
`E = 3/2 kT ....(2)`
Here, k = Boltzman constant
T = Temperature
Equating equation (1) and (2) , we get
`(kq_1q_2)/r = 3/2kT`
`⇒ T = (2Kq_1q_2)/(3kr)`
`= (2 xx 9 xx 10^9 xx 4 xx (1.6 xx 10^-19)^2)/(3 xx 1.38 xx 10^-23 xx 2 xx 10^-15)`
`= 2.23 xx 10^10 "K"`
APPEARS IN
संबंधित प्रश्न
Calculate the energy in fusion reaction:
`""_1^2H+_1^2H->_2^3He+n`, where BE of `""_1^2H`23He=7.73MeV" data-mce-style="position: relative;">=2.2323He=7.73MeV MeV and of `""_2^3He=7.73 MeV`
Distinguish between nuclear fission and fusion. Show how in both these processes energy is released. Calculate the energy release in MeV in the deuterium-tritium fusion reaction :
`""_1^2H+_1^3H->_2^4He+n`
Using the data :
m(`""_1^2H`) = 2.014102 u
m(`""_1^3H`) = 3.016049 u
m(`""_2^4He`) = 4.002603 u
mn = 1.008665 u
1u = 931.5 MeV/c2
In a photon-electron collision ______.
(A) only total energy is conserved.
(B) only total momentum is conserved.
(C) both total energy and total momentum are conserved.
(D) both total momentum and total energy are not conserved
Calculate the height of the potential barrier for a head on collision of two deuterons.
(Hint: The height of the potential barrier is given by the Coulomb repulsion between the two deuterons when they just touch each other. Assume that they can be taken as hard spheres of radius 2.0 fm.)
Write notes on Nuclear fission
Write one balanced equation to show Nuclear fission
Write one balanced equation to show Nuclear fusion
Free 238U nuclei kept in a train emit alpha particles. When the train is stationary and a uranium nucleus decays, a passenger measures that the separation between the alpha particle and the recoiling nucleus becomes x in time t after the decay. If a decay takes place when the train is moving at a uniform speed v, the distance between the alpha particle and the recoiling nucleus at a time t after the decay, as measured by the passenger will be
During a nuclear fission reaction,
Show that the minimum energy needed to separate a proton from a nucleus with Zprotons and N neutrons is `ΔE = (M_(Z-1,N) + M_B - M_(Z,N))c^2`
where MZ,N = mass of an atom with Z protons and N neutrons in the nucleus and MB = mass of a hydrogen atom. This energy is known as proton-separation energy.
Calculate the Q-values of the following fusion reactions :-
(a) `""_1^2H + ""_1^2H → ""_1^3H + ""_1^1H`
(b) `""_1^2H + ""_1^2H → ""_2^3H + n`
(c) `""_1^2H + ""_1^3H → _2^4H + n`.
Atomic masses are `m(""_1^2H) = 2.014102 "u", m(""_1^3H) = 3.016049 "u", m(""_2^3He) = 3.016029 "u", m(""_2^4He) = 4.002603 "u".`
(Use Mass of proton mp = 1.007276 u, Mass of `""_1^1"H"` atom = 1.007825 u, Mass of neutron mn = 1.008665 u, Mass of electron = 0.0005486 u ≈ 511 keV/c2,1 u = 931 MeV/c2.)
Write one balanced reaction representing nuclear fusion.
Explain in detail the four fundamental forces in nature.
Briefly explain the elementary particles present in nature.
A slab of stone of area 0.36 m2 and thickness 0.1 m is exposed on the lower surface to steam at 100°C. A block of ice at 0°C rests on the upper surface of the slab. In one hour 4.8 kg of ice is melted. The thermal conductivity of the slab is:
(Given latent heat of fusion of ice = 3.36 × 105 J kg−1)
The curve of binding energy per nucleon as a function of atomic mass number has a sharp peak for helium nucleus. This implies that helium nucleus is ______.