Advertisements
Advertisements
प्रश्न
Consider the following sets of quantum numbers:
n | l | m | s | |
(i) | 3 | 0 | 0 | `+1/2` |
(ii) | 2 | 2 | 1 | `-1/2` |
(iii) | 4 | 3 | –2 | `+1/2` |
(iv) | 1 | 0 | –1 | `+1/2` |
(v) | 3 | 4 | 3 | `-1/2` |
Which of the following sets of quantum number is not possible?
विकल्प
(i), (ii), (iii) and (iv)
(ii), (iv) and (v)
(i) and (iii)
(ii), (iii) and (iv)
उत्तर
(ii), (iv) and (v)
APPEARS IN
संबंधित प्रश्न
The energy of light of wavelength 45 nm is
The energies E1 and E2 of the two radiations are 25 eV and 50 eV respectively. The relation between their wavelengths ie λ1 and λ2 will be
Two electrons occupying the same orbital are distinguished by __________.
Assertion: Number of radial and angular nodes for 3p orbital are 1, 1 respectively.
Reason: Number of radial and angular nodes depends only on principal quantum number.
The total number of orbitals associated with the principal quantum number n = 3 is
Which quantum number reveal information about the shape, energy, orientation and size of orbitals?
How many orbitals are possible for n = 4?
How many radial nodes for 2s, 4p, 5d and 4f orbitals exhibit? How many angular nodes?
The stabilisation of a half-filled d-orbital is more pronounced than that of the p-orbital why?
Protons can be accelerated in particle accelerators. Calculate the wavelength (in Å) of such accelerated proton moving at 2.85 × 108 ms−1 (the mass of proton is 1.673 × 10−27 Kg).