हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

Derive an expression for the energy of satellite. - Physics

Advertisements
Advertisements

प्रश्न

Derive an expression for the energy of satellite.

दीर्घउत्तर

उत्तर

The total energy of the satellite is the sum of its kinetic energy and gravitational potential energy. The potential energy of the satellite is,

U = `-("GM"_"s""M"_"E")/(("R"_"E" + "h"))` ......(1)

Here Ms – mass of the satellite, ME – mass of the Earth, RE – radius of the Earth.

The Kinetic energy of the satellite is

K.E = `1/2"M"_"s""v"^2` .............(2)

Here v is the orbital speed of the satellite and is equal to

v = `sqrt("GM"_"E"/(("R"_"E" + "h")))`

Substituting the value of v in (2) the kinetic energy of the satellite becomes,

K.E = `1/2("GM"_"E""M"_"s")/(("R"_"E" + "h"))`

Therefore the total energy of the satellite is

E = `1/2("GM"_"E""M"_"s")/(("R"_"E" + "h")) - ("GM"_"s""M"_"E")/(("R"_"E" + "h"))`

E = `-("GM"_"s""M"_"E")/(2("R"_"E" + "h"))`

The negative sign in the total energy implies that the satellite is bound to the Earth and it cannot escape from the Earth.

As h approaches ∞, the total energy tends to zero. Its physical meaning is that the satellite is completely free from the influence of Earth’s gravity and is not bound to Earth at a large distance.

shaalaa.com
Escape Speed and Orbital Speed
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Gravitation - Evaluation [पृष्ठ ४४]

APPEARS IN

सामाचीर कलवी Physics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 6 Gravitation
Evaluation | Q III. 12. | पृष्ठ ४४
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×