Advertisements
Advertisements
प्रश्न
Derive the expression for the energy of an electron in the atom.
उत्तर
Consider an electron orbiting the nucleus of an atom with the atomic number Z in the nth orbit. Let m and -e represent the electron's mass and charge, r the orbit's radius, and v the electron's linear speed.
According to Bohr's first postulate,
centripetal force on the electron = electrostatic force of attraction exerted on the electron by the nucleus
∴ `"mv"^2/"r" = 1/(4piε_0) = "Ze"^2/"r"^2` ...(1)
where ε0 is the permittivity of free space.
∴ Kinetic energy (KE) of the electron
`= 1/2 "mv"^2 = "Ze"^2/(8piε_0"r")` .....(2)
The electric potential due to the nucleus of charge + Ze at a point at a distance r from it is
V = `1/(4piε_0)*"Ze"/"r"`
∴ Potential energy (PE) of the electron
= charge on the electron x electric potential
= `-"e" xx 1/(4piε_0) "Ze"/"r" = - "Ze"^2/(4piε_0"r")` ....(3)
Hence, the total energy of the electron in the nth orbit is
E = KE + PE = `"-Ze"^2/(4piε_0"r") + "Ze"^2/(8piε_0"r")`
∴ E = `"-Ze"^2/(8piε_0"r")` ......(4)
This shows that the total energy of the electron in the nth orbit of the atom is inversely proportional to the radius of the orbit as Z, ε0 and e are constants. The radius of the nth orbit of the electron is
r = `(ε_0"h"^2"n"^2)/(pi"mZe"^2)` ....(5)
where his Planck's constant.
From Eqs. (4) and (5), we get,
`"E"_"n" = - "Ze"^2/(8piε_0)((pi"mZe"^2)/(ε_0"h"^"n"^2)) = - ("mZ"^2"e"^4)/(8ε_0^2"h"^2"n"^2)` ....(6)
This expresses the energy of the electron in the nth Bohr orbit. The minus sign in the expression indicates that the electron is attracted to the nucleus by electrostatic forces.
As m, Z, e, ε0 and h are constant, we get
`"E"_"n" prop 1/"n"^2`
i.e., In a stationary energy state, the energy of the electron is discontinuous and inversely proportional to the square of the primary quantum number.
APPEARS IN
संबंधित प्रश्न
Answer in brief.
State the postulates of Bohr’s atomic model.
The radii of Bohr orbit are directly proportional to ______
For the hydrogen atom, the minimum excitation energy ( of n =2) is ______
The speed of electron having de Broglie wavelength of 10 -10 m is ______
(me = 9.1 × 10-31 kg, h = 6.63 × 10-34 J-s)
State Bohr's second postulate for the atomic model. Express it in its mathematical form.
State any two limitations of Bohr’s model for the hydrogen atoms.
Calculate the longest wavelength in the Paschen series.
(Given RH =1.097 ×107 m-1)
How the linear velocity 'v' of an electron in the Bohr orbit is related to its quantum number 'n'?
The ratio of speed of an electron in the ground state in the Bohr's first orbit of hydrogen atom to velocity of light (c) is ____________.
(h = Planck's constant, ε0 = permittivity of free space, e = charge on electron)
Using Bohr's model, the orbital period of electron in hydrogen atom in nth orbit is (ε0 = permittivity of free space, h = Planck's constant, m = mass of electron and e = electronic charge)
Bohr model is applied to a particle of mass 'm' and charge 'q' is moving in a plane under the influence of a transverse magnetic field 'B. The energy of the charged particle in the nth level will be (h = Planck's constant).
With the increase in principal quantum number, the energy difference between the two successive energy levels ____________.
For a certain atom when the system moves from 2E level to E, a photon of wavelength `lambda` is emitted. The wavelength of photon produced during its transition from `(4"E")/3` level to E is ____________.
What is the de Broglie wavelength of an electron of energy 180 eV?
(Mass of electron = 9 x 10-31 kg and Planck's constant = 6.6 x 10-34 Js.)
According to Bohr's theory, the expression for the kinetic and potential energy of an electron revolving in an orbit is given respectively by ______.
In hydrogen emission spectrum, for any series, the principal quantum number is n. Corresponding maximum wavelength λ is ______.
(R = Rydberg's constant)
In hydrogen spectnun, the wavelengths of light emited in a series of spectral lines is given by the equation `1/lambda = "R"(1/3^2 - 1/"n"^2)`, where n = 4, 5, 6 .... And 'R' is Rydberg's constant.
Identify the series and wavelenth region.
Angular speed of an electron in the ground state of hydrogen atom is 4 × 1016 rad/s. What is its angular speed in 4th orbit?
In Bohr's model of hydrogen atom, which of the following pairs of quantities are quantized?
In hydrogen atom, during the transition of electron from nth outer orbit to first Bohr orbit, a photon of wavelength `lambda` is emitted. The value of 'n' is [R =Rydberg's constant] ____________.
When an electron in hydrogen atom jumps from third excited state to the ground state, the de-Broglie wavelength associated with the electron becomes ____________.
Using Bohr's quantization condition, what is the rotational energy in the second orbit for a diatomic molecule. (I = moment of inertia of diatomic molecule, h = Planck's constant)
The value of Rydberg constant in joule is ______.
The speed of an electron in ground state energy level is 2.6 × 106 ms-1, then its speed in third excited state will be ______.
Ultraviolet light of wavelength 300 nm and intensity 1.0 Wm−2 falls on the surface of a photosensitive material. If one percent of the incident photons produce photoelectrons, then the number of photoelectrons emitted from an area of 1.0 cm2 of the surface is nearly ______.
Compute the shortest and the longest wavelength in the Lyman series of hydrogen atom.