Advertisements
Advertisements
प्रश्न
Determine the following polynomial has (x + 1) a factor:
`x^3-x^2-(2+sqrt2)x+sqrt2`
उत्तर
If(x + 1) is a factor of polynomial `p(x) = x^3-x^2-(2+sqrt2)x+sqrt2`, then p(−1) must be zero, as a result (x + 1) is not a factor of this polynomial.
`p(-1) = (-1)^3 - (-1)^2 - (2+sqrt2)(-1) + sqrt2`
= `-1-1+2+sqrt2+sqrt2`
= `2sqrt2`
As p(−1) ≠ 0,
Therefore, (x + 1) is not a factor of this polynomial.
APPEARS IN
संबंधित प्रश्न
Determine the following polynomial has (x + 1) a factor:
x3 + x2 + x + 1
Use the Factor Theorem to determine whether g(x) is a factor of p(x) in the following case:
p(x) = x3 + 3x2 + 3x + 1, g(x) = x + 2
Factorise:
3x2 – x – 4
Find the factor of the polynomial given below.
12x2 + 61x + 77
Factorize the following polynomial.
(y2 + 5y) (y2 + 5y – 2) – 24
One of the factors of (25x2 – 1) + (1 + 5x)2 is ______.
Factorise:
6x2 + 7x – 3
Factorise:
2x2 – 7x – 15
Factorise the following:
9x2 – 12x + 3
Factorise the following:
9x2 – 12x + 4