हिंदी

Determine whether the following statement is true or false. Justify your answer. For all sets A, B, and C, A – (B – C) = (A – B) – C - Mathematics

Advertisements
Advertisements

प्रश्न

Determine whether the following statement is true or false. Justify your answer.

For all sets A, B, and C, A – (B – C) = (A – B) – C

विकल्प

  • True

  • False

MCQ
सत्य या असत्य

उत्तर

This statement is False.

Explanation:


From the Venn Diagrams

A – (B – C) ≠ (A – B) – C

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Sets - Exercise [पृष्ठ १४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 1 Sets
Exercise | Q 14 | पृष्ठ १४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Let A = {1, 2, 3, 4, 5, 6}. Insert the appropriate symbol ∈ or ∉ in the blank space:

5 _____ A


List all the elements of the following set:

D = {x : x is a letter in the word “LOYAL”}


Which of the following collection are sets? Justify your answer:

 The collection of all girls in your class.


Which of the following collection are sets? Justify your answer:  

The collection of prime integers.


If A = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], then insert the appropriate symbol ∈ or ∉ in each of the following blank space: 

 9 ...... A


Describe the following sets in Roster form: 

{x ∈ N : x2 < 25}; 


Describe the following sets in Roster form: 

 {x ∈ N : x = 2nn ∈ N};


Describe the following sets in Roster form: 

The set of all letters in the word 'Better'.


Describe the following sets in set-builder form:

B={1,1/2 ,1/3, 1/4,1/5,...........};


Describe the following sets in set-builder form: 

E = {0}


Describe the following sets in set-builder form: 

{5, 25, 125 625} 


List all the elements of the following sets: 

\[A = \left\{ x: x^2 \leq 10, x \in Z \right\}\] 


Write the set of all vowels in the English alphabet which precede q.


Write the set \[\left\{ \frac{1}{2}, \frac{2}{5}, \frac{3}{10}, \frac{4}{17}, \frac{5}{26}, \frac{6}{37}, \frac{7}{50} \right\}\]  in the set-builder form.


Which of the following statements are correct?
Write a correct form of each of the incorrect statement. 

\[a \in {\left\{ a \right\}, b}\]


Let A = {ab, {cd}, e}. Which of the following statement are false and why? 

\[\left\{ \left\{ c, d \right\} \right\} \subset A\]


Let A = {{1, 2, 3}, {4, 5}, {6, 7, 8}}. Determine which of the following is true or false: 

\[1 \in A\] 


Let A = {{1, 2, 3}, {4, 5}, {6, 7, 8}}. Determine which of the following is true or false: 

\[\phi \in A\] 


Let \[A = \left\{ \phi, \left\{ \phi \right\}, 1, \left\{ 1, \phi \right\}, 2 \right\}\] Which of the following are true? \[2 \subset A\]


Let \[A = \left\{ \phi, \left\{ \phi \right\}, 1, \left\{ 1, \phi \right\}, 2 \right\}\] Which of the following are true?\[\left\{ \left\{ \phi \right\} \right\} \subset A\]

 


Write down all possible proper subsets each of the following set:

{1, 2},


If A is any set, prove that: \[A \subseteq \phi \Leftrightarrow A = \phi .\] 


Describe the following set in Set-Builder form

{0, –1, 2, –3, 4, –5, 6, ...}


There are 260 persons with skin disorders. If 150 had been exposed to chemical A, 74 to chemical B, and 36 to both chemicals A and B, find the number of persons exposed to Chemical A but not Chemical B


Write the following sets in the roaster form:
D = {t | t3 = t, t ∈ R}


Out of 100 students; 15 passed in English, 12 passed in Mathematics, 8 in Science, 6 in English and Mathematics, 7 in Mathematics and Science; 4 in English and Science; 4 in all the three. Find how many passed in English and Mathematics but not in Science.


In a class of 60 students, 25 students play cricket and 20 students play tennis, and 10 students play both the games. Find the number of students who play neither?


In a group of 50 students, the number of students studying French, English, Sanskrit were found to be as follows:
French = 17, English = 13, Sanskrit = 15 French and English = 09, English and Sanskrit = 4 French and Sanskrit = 5, English, French and Sanskrit = 3. Find the number of students who study English and Sanskrit but not French


In a group of 50 students, the number of students studying French, English, Sanskrit were found to be as follows:
French = 17, English = 13, Sanskrit = 15 French and English = 09, English and Sanskrit = 4 French and Sanskrit = 5, English, French and Sanskrit = 3. Find the number of students who study at least one of the three languages


State True or False for the following statement.

Given A = {0, 1, 2}, B = {x ∈ R | 0 ≤ x ≤ 2}. Then A = B.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×