Advertisements
Advertisements
प्रश्न
Determine whether the given set of points are collinear or not
(7, −2), (5, 1), (3, 4)
उत्तर
To prove that three points are collinear, sum of the distance between two pairs of points is equal to the third pair of points.
Distance AB = `sqrt((5 - 7)^2 + (1 + 2)^2`
= `sqrt((-2)^2 + (3)^2`
= `sqrt(4 + 9)`
= `sqrt(13)`
BC = `sqrt((3 - 5)^2 + (4 - 1)^2`
= `sqrt((-2)^2 + (3)^2`
= `sqrt(4 + 9)`
= `sqrt(13)`
AC = `sqrt((3 - 7)^2 + (4 + 2)^2`
= `sqrt((-4)^2 + (6)^2`
= `sqrt(16 + 36)`
= `sqrt(52)`
= `sqrt(2 xx 2 xx 13)`
= `2sqrt(13)`
AB + BC = AC
`sqrt(13) + sqrt(13) = 2sqrt(13)`
⇒ `2sqrt(13) = 2sqrt(13)`
∴ The given three points are collinear.
APPEARS IN
संबंधित प्रश्न
If the co-ordinate of A is x and that of B is y, find d(A, B).
x = - 3, y = 7
Sketch proper figure and write the answer of the following question.
If A- B - C and l(AC) = 11, l(BC) = 6.5, then l(AB) = ?
On a number line, co-ordinates of P, Q, R are 3, -5 and 6 respectively. State with reason whether the following statement is true or false.
d(P, Q) + d(Q, R) = d(P, R)
Co-ordinates of the pair of points are given below. Hence find the distance between the pair.
-9, -1
Find the distance between the following pair of points
(3, 4) and (−7, 2)
Show that the following points taken in order to form an isosceles triangle
A(5, 4), B(2, 0), C(−2, 3)
Show that the following points taken in order to form the vertices of a parallelogram
A(−3, 1), B(−6, −7), C(3, −9) and D(6, −1)
Verify that the following points taken in order to form the vertices of a rhombus
A(3, −2), B(7, 6), C(−1, 2) and D(−5, −6)
Find the distance with the help of the number line given below.
d(K, O)
Find the distance with the help of the number line given below.
d(P, J)