Advertisements
Advertisements
प्रश्न
Differentiate the following with respect to x.
`(x^2 + x + 1)/(x^2 - x + 1)`
उत्तर
Let y = `(x^2 + x + 1)/(x^2 - x + 1)`
`"d"/"dx" ("u"/"v") = ("v" "du"/"dx" - "u" "du"/"dx")/"v"^2`
`"dy"/"dx" = ((x^2 - x + 1)"d"/"dx" (x^2 + x + 1) - (x^2 + x + 1) "d"/"dx" (x^2 - x + 1))/(x^2 - x + 1)^2`
`= ((x^2 - x + 1)(2x + 1) - (x^2 + x + 1)(2x - 1))/(x^2 - x + 1)^2`
`= (2x^3 - 2x^3 + x^2 - 2x^2 - 2x^2 + x^2 + 2x - x - 2x + x + 1 + 1)/(x^2 - x + 1)^2`
`= (- 2x^2 + 2)/(x^2 - x + 1)^2`
`= (- 2(x^2 - 1))/(x^2 - x + 1)^2` (or)
`= (2 (1 - x^2))/(x^2 - x + 1)^2`
APPEARS IN
संबंधित प्रश्न
Differentiate the following with respect to x.
3x4 – 2x3 + x + 8
Differentiate the following with respect to x.
`e^x/(1 + x)`
Differentiate the following with respect to x.
x sin x
Differentiate the following with respect to x.
ex (x + log x)
Differentiate the following with respect to x.
sin2 x
Differentiate the following with respect to x.
(ax2 + bx + c)n
Find `"dy"/"dx"` for the following function.
x3 + y3 + 3axy = 1
Differentiate the following with respect to x.
`sqrt(((x - 1)(x - 2))/((x - 3)(x^2 + x + 1)))`
If xy2 = 1, then prove that `2 "dy"/"dx" + y^3`= 0
If y = 2 sin x + 3 cos x, then show that y2 + y = 0.