Advertisements
Advertisements
प्रश्न
Differentiate the following with respect to x.
3x4 – 2x3 + x + 8
उत्तर
Let y = 3x4 – 2x3 + x + 8
`"dy"/"dx" = "d"/"dx" (3x^4) - "d"/"dx" (2x^3) + "d"/"dx" (x) + "d"/"dx"(8)`
`= 3"d"/"dx" (x^4) - 2"d"/"dx" (x^3) + 1 + 0`
`= 3(4 * x^(4 - 1)) - 2(3x^(3-1)) + 1`
= 12x3 - 6x2 + 1
APPEARS IN
संबंधित प्रश्न
Differentiate the following with respect to x.
`(3 + 2x - x^2)/x`
Differentiate the following with respect to x.
(ax2 + bx + c)n
Find `"dy"/"dx"` for the following function.
x2 – xy + y2 = 1
If 4x + 3y = log(4x – 3y), then find `"dy"/"dx"`
Differentiate sin3x with respect to cos3x.
Differentiate sin2x with respect to x2.
If y = `(x + sqrt(1 + x^2))^m`, then show that (1 + x2) y2 + xy1 – m2y = 0
If y = sin(log x), then show that x2y2 + xy1 + y = 0.
If xy . yx , then prove that `"dy"/"dx" = y/x((x log y - y)/(y log x - x))`
If y = tan x, then prove that y2 - 2yy1 = 0.