Advertisements
Advertisements
प्रश्न
Differentiate the following w.r.t.x. :
y = (x3 – 2) tan x – x cos x + 7x. x7
उत्तर
Let y = (x3 – 2) tan x – x cos x + 7x. x7
∴ `("d"y)/("d"x) = "d"/("d"x) [(x^3 - 2) tan x - x cos x + 7^x*x^7]`
= `"d"/("d"x)[(x^3 - 2) tan x] - "d"/("d"x)[x cos x] + "d"/("d"x) [7^x*x^7]`
= `(x^3 - 2) "d"/("d"x) (tan x) + (tan x) "d"/("d"x) (x^3 - 2) - [x "d"/("d"x) (cos x) + (cos x) "d"/("d"x) (x)] + 7^x "d"/("d"x) (x^7) + x^7 "d"/("d"x)(7^x)`
= (x3 – 2)(sec2x) + (tan x)(3x2 – 0) – [x(– sin x) + (cos x)(1)] + 7x (7x6) + x7 (7x log 7)
= (x3 – 2)sec2x + 3x2 tan x + x sin x – cos x + 7x. x6 [7 + x log 7]
APPEARS IN
संबंधित प्रश्न
Differentiate the following w.r.t.x. :
y = x3 log x
Differentiate the following w.r.t.x. :
y = ex logx
Differentiate the following w.r.t.x. :
y = `x^(3/2) "e"^xlogx`
Differentiate the following w.r.t.x. :
y = log ex3 log x3
Differentiate the following w.r.t.x. :
y = `x^2sqrt(x) + x^4logx`
Differentiate the following w.r.t.x. :
y = `(x log x)/(x + log x)`