हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

Discuss the following relation for reflexivity, symmetricity and transitivity: Let A be the set consisting of all the female members of a family. - Mathematics

Advertisements
Advertisements

प्रश्न

Discuss the following relation for reflexivity, symmetricity and transitivity:

Let A be the set consisting of all the female members of a family. The relation R defined by “aRb if a is not a sister of b”

योग

उत्तर

A = {set of all female members of a family}

(a) aRa ⇒ a is a sister of a

It is reflexive

(b) aRb ⇒ a is a sister of b

bRa ⇒ b is a sister of a

⇒ It is symmetric

(c) aRb ⇒ a is a sister of b

bRc ⇒ b is a sister of c

aRc ⇒ a can be sister of c

It is not transitive.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Sets, Relations and Functions - Exercise 1.2 [पृष्ठ १८]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 1 Sets, Relations and Functions
Exercise 1.2 | Q 1. (iv) | पृष्ठ १८

संबंधित प्रश्न

Let R be the relation on Z defined by R = {(a, b): a, b ∈ Z, a – b is an integer}. Find the domain and range of R.


Find the inverse relation R−1 in each of the cases:

(iii) R is a relation from {11, 12, 13} to (8, 10, 12] defined by y = x − 3.

 

Determine the domain and range of the relation R defined by

(i) R = [(xx + 5): x ∈ (0, 1, 2, 3, 4, 5)]


Let A = {ab}. List all relations on A and find their number.

 

Let A = (xyz) and B = (ab). Find the total number of relations from A into B.

 

Define a relation R on the set N of natural number by R = {(xy) : y = x + 5, x is a natural number less than 4, xy ∈ N}. Depict this relationship using (i) roster form (ii) an arrow diagram. Write down the domain and range or R.


Let R be a relation on N × N defined by
(ab) R (cd) ⇔ a + d = b + c for all (ab), (cd) ∈ N × N
Show that:

(ii) (ab) R (cd) ⇒ (cd) R (ab) for all (ab), (cd) ∈ N × N

 

 


If A = {1, 2, 4}, B = {2, 4, 5} and C = {2, 5}, write (A − C) × (B − C).


A relation ϕ from C to R is defined by x ϕ y ⇔ |x| = y. Which one is correct?

 

Select the correct answer from given alternative.

If (x, y) ∈ R × R, then xy = x2 is a relation which is


Answer the following:

Determine the domain and range of the following relation.

R = {(a, b)/a ∈ N, a < 5, b = 4}


Answer the following:

R = {1, 2, 3} → {1, 2, 3} given by R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3)} Check if R is symmentric


Represent the given relation by
(a) an arrow diagram
(b) a graph and
(c) a set in roster form, wherever possible

{(x, y) | y = x + 3, x, y are natural numbers < 10}


Find the domain of the function f(x) = `sqrt(1 + sqrt(1 - sqrt(1 - x^2)`


Let X = {a, b, c, d} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it symmetric


On the set of natural numbers let R be the relation defined by aRb if 2a + 3b = 30. Write down the relation by listing all the pairs. Check whether it  is reflexive


On the set of natural numbers let R be the relation defined by aRb if a + b ≤ 6. Write down the relation by listing all the pairs. Check whether it is equivalence


Choose the correct alternative:

Let R be the universal relation on a set X with more than one element. Then R is


Is the given relation a function? Give reasons for your answer.

f = {(x, x) | x is a real number}


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×