Advertisements
Advertisements
प्रश्न
Divide first polynomial by second polynomial and write the answer in the form ‘Dividend = Divisor × Quotient + Remainder’.
`x^3 - 64 ; x - 4`
उत्तर
`x^3 - 64 = x^3 + 0x^2 + 0x - 64`
Using long-division method,
x2 + 4x + 16
`x - 4)overline(x^3 + 0x^2 + 0x - 64)`
x3 - 4x2
- +
4x2 + 0x
4x2 - 16x
- +
16x - 64
16x - 64
- +
0
Dividend = Divisor × Quotient + Remainder
`therefore x^3 - 64 = (x - 4) xx (x^2 + 4x +16) + 0`
APPEARS IN
संबंधित प्रश्न
There are ‘a’ trees in the village Lat. If the number of trees increases every year by ‘b’, then how many trees will there be after ‘x’ years?
Add the given polynomial.
`-7m^4 +5m^3 + sqrt2 ; 5m^4 - 3m^3 + 2m^2 + 3m - 6`
Add the given polynomial.
`2y^2 + 7y + 5 ; 3y + 9 ; 3y^2 - 4y - 3`
Subtract the second polynomial from the first.
`2ab^2 + 3a^2b - 4ab ; 3ab - 8ab^2 + 2a^2b`
Multiply the given polynomial.
`2x ; x^2 - 2x - 1`
Multiply the given polynomial.
`x^5 - 1 ; x^3 +2x^2 + 2`
Add the following polynomial.
`3p^3q+ 2p^2q + 7; 2p^2q + 4pq - 2p^3q`
Simplify.
(8m2 + 3m − 6) − (9m − 7) + (3m2 − 2m + 4)
Which polynomial is to be subtracted from x2 + 13x + 7 to get the polynomial 3x2 + 5x − 4?