Advertisements
Advertisements
प्रश्न
दोन नाणी फेकली असता खालील घटनाची संभाव्यता काढा.
एकही छापा न मिळणे.
उत्तर
नमुना अवकाश,
S = {HH, HT, TH, TT}
∴ n(S) = 4
समजा, घटना B: एकही छापा न मिळणे, ही आहे.
∴ B = {TT}
∴ n(B) = 1
∴ P(B) = `("n"("B"))/("n"("S"))`
∴ P(B) = `1/4`
APPEARS IN
संबंधित प्रश्न
एक फासा टाकला असता पुढील घटनेची संभाव्यता काढण्यासाठी खालील कृती पूर्ण करा.
घटना A: वरच्या पृष्ठभागावर मूळ संख्या मिळणे.
कृती: समजा, ‘S’ नमुना अवकाश आहे.
S = {1, 2, 3, 4, 5, 6} ∴ n(S) = 6
घटना A: वरच्या पृष्ठभागावर मूळ संख्या मिळणे.
A = {______} ∴ n(A) = 3
P(A) = `square/("n"("S"))` ...........[सूत्र]
= `square/6`
∴ P(A) = `1/square`
दोन नाणी एकाच वेळी फेकली असता, दोन्ही नाण्यांवर छाप मिळणे या घटनेची संभाव्यता काढा.
दोन फासे एकाचवेळी टाकले असता खालील घटनांची संभाव्यता काढा.
i) घटना A: पृष्ठभागावरील अंकांची बेरीज कमीत कमी 10 असणे.
ii) घटना B: पृष्ठभागावरील अंकांची बेरीज 33 असणे.
अंकांची पुनरावृत्ती न करता 2, 3, 5, 7, 9 या अंकांपासून दोन अंकी संख्या तयार केली, तर खालील घटनाची संभाव्यता काढा.
ती संख्या विषम असेल.
एका हॉकी संघात 6 बचाव करणारे, 4 आक्रमक व एक गोलरक्षक असे खेळाडू आहेत. यादृच्छिक पद्धतीने त्यांतील एक खेळाडू संघनायक म्हणून निवडायचा आहे, तर खालील घटनाची संभाव्यता काढा.
गोलरक्षक हा संघनायक असणे.
एका खोक्यात 30 तिकिटे आहेत. प्रत्येक तिकिटावर 1 ते 30 पैकी एकच संख्या लिहिली आहे. त्यांतून कोणतेही एक तिकीट यादृच्छिक पद्धतीने काढले, तर खालील घटनाची संभाव्यता काढा.
तिकिटावरील संख्या पूर्ण वर्ग असणे.
एका बागेची लांबी व रुंदी अनुक्रमे 77 मीटर व 50 मीटर आहे. बागेत 14 मीटर व्यासाचे तळे आहे. बागेजवळील इमारतीच्या गच्चीवर वाळत घातलेला टॉवेल वाऱ्यामुळे उडून बागेत पडला, तर तो बागेतील तळ्यात पडला असण्याची संभाव्यता काढा.
प्रात्येक कार्डावर एक याप्रमाणे 0 ते 5 या पूर्णांक संख्या लिहून तयार केलेली सहा कार्डे खोक्यात ठेवली आहेत, तर खालील घटनेची संभाव्यता काढा.
काढलेल्या कार्डावरील संख्या ही नैसर्गिक संख्या असणे.
एका फाशाच्या पृष्ठभागावर 0, 1, 2, 3, 4, 5 या संख्या आहेत. हा फासा दोनदा फेकला, तर वरच्या पृष्ठांवर मिळालेल्या संख्यांचा गुणाकार शून्य असण्याची संभाव्यता काढा.
एक नाणे व एक फासा एकाच वेळी फेकले असता खालील घटनाची संभाव्यता काढा:
घटना A : छाप व मूळ संख्या मिळणे अशी आहे.