Advertisements
Advertisements
प्रश्न
Draw a graph of each of the following equations: `(x - 2)/(3) - (y + 1)/(2)` = 0
उत्तर
`(x - 2)/(3) - (y + 1)/(2)` = 0
⇒ `(x - 2)/(3) - (y + 1)/(2)`
⇒ 2(x - 2) = 3(y + 1)
= 2x - 4 = 3y + 3
⇒ 3y = 2x - 7
⇒ y = `(2x - 7)/(3)`
When x = 2, y = `(2(2) - 7)/(3)` = -1
When x = -1, y = `(2(-1) - 7)/(3)` = -3
When x = -2.5, y = `(2(-2.5) - 7)/(3)` = 4
x | 2 | -1 | -2.5 |
y | -1 | -3 | -4 |
Plotting the points (2, -1), (-1, -3) and (-2.5, -4), we get a line AB as shown in the figure.
APPEARS IN
संबंधित प्रश्न
Draw the graph for the linear equation given below:
y = 3x
Draw the graph for the linear equation given below:
y = x
Draw the graph for the linear equation given below:
x + 2y = 0
Draw the graph for the linear equation given below:
x = - 2y
Draw the graph for the linear equation given below:
y = `4x - (5)/(2)`
Draw the graph for the each linear equation given below:
y = `(3x)/(2) + (2)/(3)`
For the pair of linear equations given below, draw graphs and then state, whether the lines drawn are parallel or perpendicular to each other.
3x + 4y = 24
`x/(4) + y/(3) = 1`
Find if the following points are collinear or not by using a graph:
(i) (-2, -1), (0, 3) and (1, 5)
(ii) (1, 3), (-2, -4) and (3, 5)
(iii) (2, -1), (2, 5) and (2, 7)
(iv) (4, -1), (-5, -1) and (3, -1)
Draw a graph for each of the following equations and find the coordinates of the points where the line drawn meets the x-axis and y-axis: `(2x)/(5) + y/(2)` = 1
Draw the graph of the lines represented by the equations x + y = 4 and 2x - y = 2 on the same graph. Find the coordinates of the point where they intersect