Advertisements
Advertisements
प्रश्न
Evaluate: (a + 1)(a2 - a + 1) and (a - 1)(a2 + a + 1)
उत्तर
(a + 1)(a2 - a + 1) and (a - 1)(a2 + a + 1)
= a (a2 - a + 1) + 1 (a2 - a + 1)
= a3 - a2 + a + a2 - a + 1
= a3 + 1
(a - 1)(a2 + a + 1)
= a(a2 + a + 1) - 1(a2 + a + 1)
= a3 + a2 + a - a2 - a - 1
= a3 - 1
Now, (a + 1)(a2 - a + 1) + (a - 1)(a2 + a + 1)
= a3 + 1 + a3 - 1
= 2a3
APPEARS IN
संबंधित प्रश्न
Subtract: 4p + p2 from 3p2 - 8p
Subtract: a2 - 3ab - 6b2 from 2b2 - a2 + 2ab
Multiply: 5, 3a and 2ab2
Copy and complete the following multi-plication:
ax - b
× 2ax + 2b2
Copy and complete the following multiplication:
4x3 − 10x2 + 6x − 8
× 3 + 2x − x2
Evaluate: (3x - 2y)(4x + 3y)
Evaluate: (a + 5)(3a - 2)(5a + 1)
Simplify: `"y"/4 +"3y"/5`
Simplify: `"k"/2 + "k"/3 + "2k"/5`
Simplify: `(5 ("x" - 4))/3 + (2(5x - 3))/5 + (6(x - 4))/7`