Advertisements
Advertisements
प्रश्न
Evaluate: (a + 1)(a2 - a + 1) and (a - 1)(a2 + a + 1)
उत्तर
(a + 1)(a2 - a + 1) and (a - 1)(a2 + a + 1)
= a (a2 - a + 1) + 1 (a2 - a + 1)
= a3 - a2 + a + a2 - a + 1
= a3 + 1
(a - 1)(a2 + a + 1)
= a(a2 + a + 1) - 1(a2 + a + 1)
= a3 + a2 + a - a2 - a - 1
= a3 - 1
Now, (a + 1)(a2 - a + 1) + (a - 1)(a2 + a + 1)
= a3 + 1 + a3 - 1
= 2a3
APPEARS IN
संबंधित प्रश्न
Subtract: - 8c from c + 3d
Subtract: 5a - 3b + 2c from 4a - b - 2c
Subtract: 2x2 - 7xy - y2 from 3x2 - 5xy + 3y2
Subtract: 4x2 - 5x2y + y2 from - 3y2 + 5xy2 - 7x2 - 9x2y
What must be subtracted from a2 + b2 + lab to get – 4ab + 2b2?
Subtract the sum of 3a2 – 2a + 5 and a2 – 5a – 7 from the sum of 5a2 -9a + 3 and 2a – a2 – 1
If m = 9x2 - 4xy + 5y2 and n = - 3x2 + 2xy - y2 find: m + 2n
Simplify: x - (x - y) - y - (y - x)
Copy and complete the following multi-plication:
9x + 5y
× - 3xy
Simplify: `"x"/5 + "x + 1"/2`