हिंदी

Evaluate Lim X → 2 F ( X ) (If It Exists), Where F ( X ) = ⎧ ⎪ ⎨ ⎪ ⎩ X − [ X ] , X < 2 4 , X = 2 3 X − 5 , X > 2 . - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate \[\lim_{x \to 2} f\left( x \right)\] (if it exists), where \[f\left( x \right) = \left\{ \begin{array}{l}x - \left[ x \right], & x < 2 \\ 4, & x = 2 \\ 3x - 5, & x > 2\end{array} . \right.\]

उत्तर

\[f\left( x \right) = \begin{cases}x - \left[ x \right], & x < 2 \\ 4, & x = 2 \\ 3x - 5, & x > 2\end{cases}\]
\[\text{ LHL }: \]
\[ \lim_{x \to 2^-} f\left( x \right)\]
\[ = \lim_{x \to 2^-} \left\{ x - \left[ x \right] \right\}\]
\[\text{ Let } x = 2 - \text{ h, where h } \to 0 . \]
\[ \Rightarrow \lim_{h \to 0} \left[ \left( 2 - h \right) - \left[ 2 - h \right] \right]\]
\[ = 2 - \left( 1 \right)\]
\[ = 1\]
\[\text{ RHL }: \]
\[ \lim_{x \to 2^+} f\left( x \right)\]
\[ = \lim_{x \to 2^+} \left( 3x - 5 \right)\]
\[\text{ Let } x = 2 + \text{ h, where h } \to 0 . \]
\[ \Rightarrow \lim_{h \to 0} \left[ 3\left( 2 + h \right) - 5 \right]\]
\[ = 6 - 5\]
\[ = 1\]
\[\text{ Here }, LHL = RHL = 1\]
\[ \therefore \lim_{x \to 2} f\left( x \right) = 1\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 29: Limits - Exercise 29.1 [पृष्ठ १२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 29 Limits
Exercise 29.1 | Q 20 | पृष्ठ १२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Show that \[\lim_{x \to 0} \frac{1}{x}\] does not exist. 


Let \[f\left( x \right) = \left\{ \begin{array}{l}x + 1, & if x \geq 0 \\ x - 1, & if x < 0\end{array} . \right.\]Prove that \[\lim_{x \to 0} f\left( x \right)\] does not exist.


Let \[f\left( x \right) = \begin{cases}x + 5, & if x > 0 \\ x - 4, & if x < 0\end{cases}\] \[\lim_{x \to 0} f\left( x \right)\]  does not exist. 


If \[f\left( x \right) = \left\{ \begin{array}{l}2x + 3, & x \leq 0 \\ 3 \left( x + 1 \right), & x > 0\end{array} . \right.\] find \[\lim_{x \to 0} f\left( x \right)\] 


If \[f\left(  x \right) = \left\{ \begin{array}{l}2x + 3, & x \leq 0 \\ 3 \left( x + 1 \right), & x > 0\end{array} . \right.\] find \[\lim_{x \to 1} f\left( x \right)\]


Find \[\lim_{x \to 1} f\left( x \right)\] if \[f\left( x \right) = \begin{cases}x^2 - 1, & x \leq 1 \\ - x^2 - 1, & x > 1\end{cases}\] 


Let a1a2, ..., an be fixed real numbers such that
f(x) = (x − a1) (x − a2) ... (x − an)
What is \[\lim_{x \to a_1} f\left( x \right)?\] Compute \[\lim_{x \to a} f\left( x \right) .\] 


Find \[\lim_{x \to 1^+} \left( \frac{1}{x - 1} \right) .\] 


Evaluate the following one sided limit:

\[\lim_{x \to - 8^+} \frac{2x}{x + 8}\]


Evaluate the following one sided limit:

\[\lim_{x \to 0^+} \frac{2}{x^{1/5}}\]


Evaluate the following one sided limit: 

\[\lim_{x \to \frac{\pi}{2}} \tan x\]


Evaluate the following one sided limit:

\[\lim_{x \to \frac{\pi}{2}} \tan x\]


Evaluate the following one sided limit:

\[\lim_{x \to 0^-} 1 + cosec x\]


Show that \[\lim_{x \to 0} e^{- 1/x}\] does not exist. 


Find: \[\ \lim_{x \to 2} \left[ x \right]\] 


Find: \[ \lim_{x \to \frac{5}{2}} \left[ x \right]\]

 


Show that \[\lim_{x \to 2^-} \frac{x}{\left[ x \right]} \neq \lim_{x \to 2^+} \frac{x}{\left[ x \right]} .\]


Find \[\lim_{x \to 5/2} \left[ x \right] .\] 


Show that \[\lim_{x \to 0} \sin \frac{1}{x}\]does not exist. 


Let \[f\left( x \right) = \begin{cases}\frac{k\cos x}{\pi - 2x}, & where x \neq \frac{\pi}{2} \\ 3, & where x = \frac{\pi}{2}\end{cases}\]   and if \[\lim_{x \to \frac{\pi}{2}} f\left( x \right) = f\left( \frac{\pi}{2} \right)\] 


\[\lim_{x \to 0} \frac{\cos 3x - \cos 5x}{x^2}\]

\[\lim_{n \to \infty} n \sin \left( \frac{\pi}{4 n} \right) \cos \left( \frac{\pi}{4 n} \right)\]

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×