हिंदी

Let F ( X ) = { K Cos X π − 2 X , W H E R E X ≠ π 2 3 , W H E R E X = π 2 and If Lim X → π 2 F ( X ) = F ( π 2 ) - Mathematics

Advertisements
Advertisements

प्रश्न

Let \[f\left( x \right) = \begin{cases}\frac{k\cos x}{\pi - 2x}, & where x \neq \frac{\pi}{2} \\ 3, & where x = \frac{\pi}{2}\end{cases}\]   and if \[\lim_{x \to \frac{\pi}{2}} f\left( x \right) = f\left( \frac{\pi}{2} \right)\] 

उत्तर

We have, \[f\left( x \right) = \begin{cases}\frac{k\cos x}{\pi - 2x}, & where x \neq \frac{\pi}{2} \\ 3, & where x = \frac{\pi}{2}\end{cases}\] 

It is given that,

\[\lim_{x \to \frac{\pi}{2}} f\left( x \right) = f\left( \frac{\pi}{2} \right)\]
\[ \Rightarrow \lim_{x \to \frac{\pi}{2}} \frac{k\cos x}{\pi - 2x} = 3\]
\[ \Rightarrow \frac{k}{2} \times \lim_{x - \frac{\pi}{2} \to 0} \frac{\sin\left( \frac{\pi}{2} - x \right)}{\frac{\pi}{2} - x} = 3\]
\[ \Rightarrow \frac{k}{2} \times \lim_{h \to 0} \frac{\sin\left( - h \right)}{- h} = 3 \left( Put x - \frac{\pi}{2} = h \right)\] 

\[\lim_{x \to \frac{\pi}{2}} f\left( x \right) = f\left( \frac{\pi}{2} \right)\]
\[ \Rightarrow \lim_{x \to \frac{\pi}{2}} \frac{k\cos x}{\pi - 2x} = 3\]
\[ \Rightarrow \frac{k}{2} \times \lim_{x - \frac{\pi}{2} \to 0} \frac{\sin\left( \frac{\pi}{2} - x \right)}{\frac{\pi}{2} - x} = 3\]
\[ \Rightarrow \frac{k}{2} \times \lim_{h \to 0} \frac{\sin\left( - h \right)}{- h} = 3 \left( Put x - \frac{\pi}{2} = h \right)\]

\[\Rightarrow \frac{k}{2} \times \lim_{h \to 0} \frac{\sinh}{h} = 3 \left[ \sin\left( - \theta \right) = - \sin\theta \right]\]

\[ \Rightarrow \frac{k}{2} = 3 \left( \lim_{x \to 0} \frac{\sin x}{x} = 1 \right)\]

\[ \Rightarrow k = 6\]

Hence, the value of k is 6.

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 29: Limits - Exercise 29.1 [पृष्ठ १२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 29 Limits
Exercise 29.1 | Q 22 | पृष्ठ १२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find k so that \[\lim_{x \to 2} f\left( x \right)\] \[f\left( x \right) = \begin{cases}2x + 3, & x \leq 2 \\ x + k, & x > 2\end{cases} .\] 


Let f(x) be a function defined by \[f\left( x \right) = \begin{cases}\frac{3x}{\left| x \right| + 2x}, & x \neq 0 \\ 0, & x = 0\end{cases} .\] Show that \[\lim_{x \to 0} f\left( x \right)\] does not exist.

 

Let \[f\left( x \right) = \left\{ \begin{array}{l}x + 1, & if x \geq 0 \\ x - 1, & if x < 0\end{array} . \right.\]Prove that \[\lim_{x \to 0} f\left( x \right)\] does not exist.


Let \[f\left( x \right) = \begin{cases}x + 5, & if x > 0 \\ x - 4, & if x < 0\end{cases}\] \[\lim_{x \to 0} f\left( x \right)\]  does not exist. 


Find \[\lim_{x \to 3} f\left( x \right)\] where \[f\left( x \right) = \begin{cases}4, & if x > 3 \\ x + 1, & if x < 3\end{cases}\] 


If \[f\left(  x \right) = \left\{ \begin{array}{l}2x + 3, & x \leq 0 \\ 3 \left( x + 1 \right), & x > 0\end{array} . \right.\] find \[\lim_{x \to 1} f\left( x \right)\]


Find \[\lim_{x \to 1} f\left( x \right)\] if \[f\left( x \right) = \begin{cases}x^2 - 1, & x \leq 1 \\ - x^2 - 1, & x > 1\end{cases}\] 


Evaluate \[\lim_{x \to 0} f\left( x \right)\]  where \[f\left( x \right) = \begin{cases}\frac{\left| x \right|}{x}, & x \neq 0 \\ 0, & x = 0\end{cases}\] 


Let a1a2, ..., an be fixed real numbers such that
f(x) = (x − a1) (x − a2) ... (x − an)
What is \[\lim_{x \to a_1} f\left( x \right)?\] Compute \[\lim_{x \to a} f\left( x \right) .\] 


Find \[\lim_{x \to 1^+} \left( \frac{1}{x - 1} \right) .\] 


Evaluate the following one sided limit:

\[\lim_{x \to 0^+} \frac{1}{3x}\]


Evaluate the following one sided limit:

\[\lim_{x \to - 8^+} \frac{2x}{x + 8}\]


Evaluate the following one sided limit: 

\[\lim_{x \to \frac{\pi}{2}} \tan x\]


Evaluate the following one sided limit:

\[\lim_{x \to 0^-} \frac{x^2 - 3x + 2}{x^3 - 2 x^2}\]


Evaluate the following one sided limit:

\[\lim_{x \to - 2^+} \frac{x^2 - 1}{2x + 4}\]


Evaluate the following one sided limit:

\[\lim_{x \to 0^-} 2 - \cot x\] 


Evaluate the following one sided limit:

\[\lim_{x \to 0^-} 1 + cosec x\]


Show that \[\lim_{x \to 0} e^{- 1/x}\] does not exist. 


Find: \[ \lim_{x \to \frac{5}{2}} \left[ x \right]\]

 


Find: \[ \lim_{x \to 1} \left[ x \right]\]


Prove that \[\lim_{x \to a^+} \left[ x \right] = \left[ a \right]\] R. Also, prove that \[\lim_{x \to 1^-} \left[ x \right] = 0 .\]


Show that \[\lim_{x \to 2^-} \frac{x}{\left[ x \right]} \neq \lim_{x \to 2^+} \frac{x}{\left[ x \right]} .\]


Find \[\lim_{x \to 3^+} \frac{x}{\left[ x \right]} .\]  Is it equal to \[\lim_{x \to 3^-} \frac{x}{\left[ x \right]} .\]


Find \[\lim_{x \to 5/2} \left[ x \right] .\] 


Show that \[\lim_{x \to 0} \sin \frac{1}{x}\]does not exist. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×