Advertisements
Advertisements
प्रश्न
Let f(x) be a function defined by \[f\left( x \right) = \begin{cases}\frac{3x}{\left| x \right| + 2x}, & x \neq 0 \\ 0, & x = 0\end{cases} .\] Show that \[\lim_{x \to 0} f\left( x \right)\] does not exist.
उत्तर
\[f\left( x \right) = \begin{cases}\frac{3x}{\left| x \right| + 2x}, & x \neq 0 \\ 0, & x = 0\end{cases}\]
\[\text{ Left hand limit }: \]
\[ \lim_{x \to 0^-} \left[ \frac{3x}{\left| x \right| + 2x} \right]\]
\[\text{ Let } x = 0 - h, \text{ where } h \to 0 . \]
\[ \Rightarrow \lim_{h \to 0} \left[ \frac{3\left( - h \right)}{\left| - h \right| + 2\left( - h \right)} \right]\]
\[ = \lim_{h \to 0} \left[ \frac{- 3h}{h - 2h} \right]\]
\[ = \lim_{h \to 0} \left[ \frac{- 3h}{- h} \right]\]
\[ = 3\]
\[\text{ Right hand limit }: \]
\[ \lim_{x \to 0^+} \left( \frac{3x}{\left| x \right| + 2x} \right)\]
\[\text{ Let } x = 0 + h, \text{ where } h \to 0 . \]
\[ \Rightarrow^{} \lim_{h \to 0} \left( \frac{3h}{\left| h \right| + 2h} \right)\]
\[ = \lim_{h \to 0} \left( \frac{3h}{h + 2h} \right)\]
\[ = 1\]
\[ \lim_{x \to 0^-} \left( \frac{3x}{\left| x \right| + 2x} \right) \neq \lim_{x \to 0^+} \left( \frac{3x}{\left| x \right| + 2x} \right)\]
\[\text{ Thus }, \lim_{x \to 0} f\left( x \right) \text{ does not exist } .\]
APPEARS IN
संबंधित प्रश्न
Find k so that \[\lim_{x \to 2} f\left( x \right)\] \[f\left( x \right) = \begin{cases}2x + 3, & x \leq 2 \\ x + k, & x > 2\end{cases} .\]
Show that \[\lim_{x \to 0} \frac{1}{x}\] does not exist.
Let \[f\left( x \right) = \left\{ \begin{array}{l}x + 1, & if x \geq 0 \\ x - 1, & if x < 0\end{array} . \right.\]Prove that \[\lim_{x \to 0} f\left( x \right)\] does not exist.
Let \[f\left( x \right) = \begin{cases}x + 5, & if x > 0 \\ x - 4, & if x < 0\end{cases}\] \[\lim_{x \to 0} f\left( x \right)\] does not exist.
Find \[\lim_{x \to 3} f\left( x \right)\] where \[f\left( x \right) = \begin{cases}4, & if x > 3 \\ x + 1, & if x < 3\end{cases}\]
If \[f\left( x \right) = \left\{ \begin{array}{l}2x + 3, & x \leq 0 \\ 3 \left( x + 1 \right), & x > 0\end{array} . \right.\] find \[\lim_{x \to 0} f\left( x \right)\]
If \[f\left( x \right) = \left\{ \begin{array}{l}2x + 3, & x \leq 0 \\ 3 \left( x + 1 \right), & x > 0\end{array} . \right.\] find \[\lim_{x \to 1} f\left( x \right)\]
Find \[\lim_{x \to 1} f\left( x \right)\] if \[f\left( x \right) = \begin{cases}x^2 - 1, & x \leq 1 \\ - x^2 - 1, & x > 1\end{cases}\]
Let a1, a2, ..., an be fixed real numbers such that
f(x) = (x − a1) (x − a2) ... (x − an)
What is \[\lim_{x \to a_1} f\left( x \right)?\] Compute \[\lim_{x \to a} f\left( x \right) .\]
Find \[\lim_{x \to 1^+} \left( \frac{1}{x - 1} \right) .\]
Evaluate the following one sided limit:
\[\lim_{x \to 2^+} \frac{x - 3}{x^2 - 4}\]
Evaluate the following one sided limit:
\[\lim_{x \to 0^+} \frac{1}{3x}\]
Evaluate the following one sided limit:
\[\lim_{x \to - 8^+} \frac{2x}{x + 8}\]
Evaluate the following one sided limit:
\[\lim_{x \to 0^+} \frac{2}{x^{1/5}}\]
Evaluate the following one sided limit:
\[\lim_{x \to \frac{\pi}{2}} \tan x\]
Evaluate the following one sided limit:
\[\lim_{x \to \frac{\pi}{2}} \tan x\]
Evaluate the following one sided limit:
\[\lim_{x \to 0^-} \frac{x^2 - 3x + 2}{x^3 - 2 x^2}\]
Evaluate the following one sided limit:
\[\lim_{x \to - 2^+} \frac{x^2 - 1}{2x + 4}\]
Evaluate the following one sided limit:
\[\lim_{x \to 0^-} 1 + cosec x\]
Show that \[\lim_{x \to 2^-} \frac{x}{\left[ x \right]} \neq \lim_{x \to 2^+} \frac{x}{\left[ x \right]} .\]
Show that \[\lim_{x \to 0} \sin \frac{1}{x}\]does not exist.
Let \[f\left( x \right) = \begin{cases}\frac{k\cos x}{\pi - 2x}, & where x \neq \frac{\pi}{2} \\ 3, & where x = \frac{\pi}{2}\end{cases}\] and if \[\lim_{x \to \frac{\pi}{2}} f\left( x \right) = f\left( \frac{\pi}{2} \right)\]