Advertisements
Advertisements
प्रश्न
Evaluate `(n!)/((n-r)!)` when n = 6, r = 2
उत्तर
when n = 6, r = 2 `(n!)/((n-r)!) = (6!)/((6 - 2)!) = (6!)/(4!) = (6 xx 5 xx 4!)/(4!) = 30`
APPEARS IN
संबंधित प्रश्न
Is 3! + 4! = 7!?
Compute `(8!)/(6! xx 2!)`
How many words, with or without meaning, can be formed using all the letters of the word EQUATION, using each letter exactly once?
In how many ways can the letters of the word PERMUTATIONS be arranged if the vowels are all together.
Find x in each of the following:
Find x in each of the following:
Find x in each of the following:
How many natural numbers not exceeding 4321 can be formed with the digits 1, 2, 3 and 4, if the digits can repeat?
How many numbers of six digits can be formed from the digits 0, 1, 3, 5, 7 and 9 when no digit is repeated? How many of them are divisible by 10 ?
If three six faced die each marked with numbers 1 to 6 on six faces, are thrown find the total number of possible outcomes ?
How many 5-digit telephone numbers can be constructed using the digits 0 to 9. If each number starts with 67 and no digit appears more than once?
Find the number of ways in which 8 distinct toys can be distributed among 5 childrens.
In how many ways can 4 prizes be distributed among 5 students, when
(i) no student gets more than one prize?
(ii) a student may get any number of prizes?
(iii) no student gets all the prizes?
Evaluate each of the following:
P(6, 4)
Write the number of 5 digit numbers that can be formed using digits 0, 1 and 2 ?
Write the number of words that can be formed out of the letters of the word 'COMMITTEE' ?
Write the number of all possible words that can be formed using the letters of the word 'MATHEMATICS'.
Write the number of numbers that can be formed using all for digits 1, 2, 3, 4 ?
The number of five-digit telephone numbers having at least one of their digits repeated is
In a room there are 12 bulbs of the same wattage, each having a separate switch. The number of ways to light the room with different amounts of illumination is
If nP4 = 12(nP2), find n.
If `""^(("n" – 1))"P"_3 : ""^"n""P"_4` = 1 : 10 find n
A test consists of 10 multiple choice questions. In how many ways can the test be answered if the first four questions have three choices and the remaining have five choices?
8 women and 6 men are standing in a line. In how many arrangements will no two men be standing next to one another?
Find the distinct permutations of the letters of the word MISSISSIPPI?
In how many ways can the letters of the word SUCCESS be arranged so that all Ss are together?
A coin is tossed 8 times, how many different sequences containing six heads and two tails are possible?
Find the sum of all 4-digit numbers that can be formed using digits 1, 2, 3, 4, and 5 repetitions not allowed?
The number of arrangements of the letters of the word BANANA in which two N's do not appear adjacently is ______.
How many words can be formed with the letters of the word MANAGEMENT by rearranging them?
If all permutations of the letters of the word AGAIN are arranged in the order as in a dictionary. What is the 49th word?
The number of signals that can be sent by 6 flags of different colours taking one or more at a time is ______.
Find the number of permutations of n distinct things taken r together, in which 3 particular things must occur together.
The number of words which can be formed out of the letters of the word ARTICLE, so that vowels occupy the even place is ______.
Five boys and five girls form a line. Find the number of ways of making the seating arrangement under the following condition:
C1 | C2 |
(a) Boys and girls alternate: | (i) 5! × 6! |
(b) No two girls sit together : | (ii) 10! – 5! 6! |
(c) All the girls sit together | (iii) (5!)2 + (5!)2 |
(d) All the girls are never together : | (iv) 2! 5! 5! |
Let b1, b2, b3, b4 be a 4-element permutation with bi ∈ {1, 2, 3, .......,100} for 1 ≤ i ≤ 4 and bi ≠ bj for i ≠ j, such that either b1, b2, b3 are consecutive integers or b2, b3, b4 are consecutive integers. Then the number of such permutations b1, b2, b3, b4 is equal to ______.
The number of three-digit even numbers, formed by the digits 0, 1, 3, 4, 6, 7 if the repetition of digits is not allowed, is ______.
Ten different letters of an alphabet are given. Words with five letters are formed from these given letters. Determine the number of words which have at least one letter repeated.
If m+nP2 = 90 and m–nP2 = 30, then (m, n) is given by ______.