Advertisements
Advertisements
प्रश्न
Evaluate `(n!)/((n-r)!)` when n = 6, r = 2
उत्तर
when n = 6, r = 2 `(n!)/((n-r)!) = (6!)/((6 - 2)!) = (6!)/(4!) = (6 xx 5 xx 4!)/(4!) = 30`
APPEARS IN
संबंधित प्रश्न
Is 3! + 4! = 7!?
Find the number of 4-digit numbers that can be formed using the digits 1, 2, 3, 4, 5 if no digit is repeated. How many of these will be even?
How many words, with or without meaning can be made from the letters of the word MONDAY, assuming that no letter is repeated, if
(i) 4 letters are used at a time,
(ii) all letters are used at a time,
(iii) all letters are used but first letter is a vowel?
In how many ways can the letters of the word PERMUTATIONS be arranged if the vowels are all together.
Find x in each of the following:
A customer forgets a four-digits code for an Automatic Teller Machine (ATM) in a bank. However, he remembers that this code consists of digits 3, 5, 6 and 9. Find the largest possible number of trials necessary to obtain the correct code.
A coin is tossed three times and the outcomes are recorded. How many possible outcomes are there? How many possible outcomes if the coin is tossed four times? Five times? n times?
How many numbers of four digits can be formed with the digits 1, 2, 3, 4, 5 if the digits can be repeated in the same number?
Find the number of ways in which 8 distinct toys can be distributed among 5 childrens.
There are 10 lamps in a hall. Each one of them can be switched on independently. Find the number of ways in which the hall can be illuminated ?
Evaluate each of the following:
6P6
In how many ways can 4 letters be posted in 5 letter boxes?
Write the number of ways in which 7 men and 7 women can sit on a round table such that no two women sit together ?
Write the number of ways in which 6 men and 5 women can dine at a round table if no two women sit together ?
The number of words that can be formed out of the letters of the word "ARTICLE" so that vowels occupy even places is
The number of words from the letters of the word 'BHARAT' in which B and H will never come together, is
A 5-digit number divisible by 3 is to be formed using the digits 0, 1, 2, 3, 4 and 5 without repetition. The total number of ways in which this can be done is
The number of words that can be made by re-arranging the letters of the word APURBA so that vowels and consonants are alternate is
The number of ways in which the letters of the word ARTICLE can be arranged so that even places are always occupied by consonants is
English alphabet has 11 symmetric letters that appear same when looked at in a mirror. These letters are A, H, I, M, O, T, U, V, W, X and Y. How many symmetric three letters passwords can be formed using these letters?
If nP4 = 12(nP2), find n.
In how many ways 5 boys and 3 girls can be seated in a row, so that no two girls are together?
Find the number of arrangements that can be made out of the letters of the word “ASSASSINATION”.
Evaluate the following.
`((3!)! xx 2!)/(5!)`
The greatest positive integer which divide n(n + 1) (n + 2) (n + 3) for all n ∈ N is:
If n is a positive integer, then the number of terms in the expansion of (x + a)n is:
The number of words with or without meaning that can be formed using letters of the word “EQUATION”, with no repetition of letters is:
A test consists of 10 multiple choice questions. In how many ways can the test be answered if each question has four choices?
A student appears in an objective test which contain 5 multiple choice questions. Each question has four choices out of which one correct answer.
What is the maximum number of different answers can the students give?
Find the distinct permutations of the letters of the word MISSISSIPPI?
Find the sum of all 4-digit numbers that can be formed using digits 1, 2, 3, 4, and 5 repetitions not allowed?
Find the sum of all 4-digit numbers that can be formed using digits 0, 2, 5, 7, 8 without repetition?
In how many ways 3 mathematics books, 4 history books, 3 chemistry books and 2 biology books can be arranged on a shelf so that all books of the same subjects are together.
Suppose m men and n women are to be seated in a row so that no two women sit together. If m > n, show that the number of ways in which they can be seated is `(m!(m + 1)!)/((m - n + 1)1)`
Find the number of permutations of n different things taken r at a time such that two specific things occur together.
Find the number of permutations of n distinct things taken r together, in which 3 particular things must occur together.
The number of 5-digit telephone numbers having atleast one of their digits repeated is ______.
The number of permutations by taking all letters and keeping the vowels of the word ‘COMBINE’ in the odd places is ______.