मराठी

Write the Number of Ways in Which 7 Men and 7 Women Can Sit on a Round Table Such that No Two Women Sit Together ? - Mathematics

Advertisements
Advertisements

प्रश्न

Write the number of ways in which 7 men and 7 women can sit on a round table such that no two women sit together ?

उत्तर


Each of the seven men can be arranged amongst themselves in 7! ways.
The women can be arranged amongst themselves in seven places, in 6! ways (i.e. nthings can be arranged in (n-1)! ways around a round table).
By fundamental principle of counting, total number of ways = 7! x 6!

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Permutations - Exercise 16.6 [पृष्ठ ४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 16 Permutations
Exercise 16.6 | Q 6 | पृष्ठ ४५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Evaluate 4! – 3!


if `1/(6!) + 1/(7!) = x/(8!)`, find x


How many 4-digit numbers are there with no digit repeated?


From a committee of 8 persons, in how many ways can we choose a chairman and a vice chairman assuming one person cannot hold more than one position?


How many words, with or without meaning, can be formed using all the letters of the word EQUATION, using each letter exactly once?


In how many of the distinct permutations of the letters in MISSISSIPPI do the four I’s not come together?


In how many ways can the letters of the word PERMUTATIONS be arranged if the there are always 4 letters between P and S?


Find x in each of the following:

\[\frac{1}{4!} + \frac{1}{5!} = \frac{x}{6!}\]

Which of the following are true:

(2 +3)! = 2! + 3!


A coin is tossed three times and the outcomes are recorded. How many possible outcomes are there? How many possible outcomes if the coin is tossed four times? Five times? n times?


Three dice are rolled. Find the number of possible outcomes in which at least one die shows 5 ?


Write the number of 5 digit numbers that can be formed using digits 0, 1 and 2 ?


Write the number of ways in which 6 men and 5 women can dine at a round table if no two women sit together ?


Write the remainder obtained when 1! + 2! + 3! + ... + 200! is divided by 14 ?


The number of five-digit telephone numbers having at least one of their digits repeated is


The number of different signals which can be given from 6 flags of different colours taking one or more at a time, is


The number of words from the letters of the word 'BHARAT' in which B and H will never come together, is


The number of ways in which the letters of the word 'CONSTANT' can be arranged without changing the relative positions of the vowels and consonants is


If in a group of n distinct objects, the number of arrangements of 4 objects is 12 times the number of arrangements of 2 objects, then the number of objects is


Find x if `1/(6!) + 1/(7!) = x/(8!)`


How many five digits telephone numbers can be constructed using the digits 0 to 9 If each number starts with 67 with no digit appears more than once?


Determine the number of permutations of the letters of the word SIMPLE if all are taken at a time?


A student appears in an objective test which contain 5 multiple choice questions. Each question has four choices out of which one correct answer.

What is the maximum number of different answers can the students give?


8 women and 6 men are standing in a line. In how many arrangements will all 6 men be standing next to one another?


8 women and 6 men are standing in a line. In how many arrangements will no two men be standing next to one another?


How many strings are there using the letters of the word INTERMEDIATE, if the vowels and consonants are alternative


Each of the digits 1, 1, 2, 3, 3 and 4 is written on a separate card. The six cards are then laid out in a row to form a 6-digit number. How many of these 6-digit numbers are even?


Find the sum of all 4-digit numbers that can be formed using digits 0, 2, 5, 7, 8 without repetition?


Choose the correct alternative:
The product of r consecutive positive integers is divisible b


Suppose m men and n women are to be seated in a row so that no two women sit together. If m > n, show that the number of ways in which they can be seated is `(m!(m + 1)!)/((m - n + 1)1)`


Ten different letters of alphabet are given. Words with five letters are formed from these given letters. Then the number of words which have atleast one letter repeated is ______.


A five-digit number divisible by 3 is to be formed using the numbers 0, 1, 2, 3, 4 and 5 without repetitions. The total number of ways this can be done is ______.


Five boys and five girls form a line. Find the number of ways of making the seating arrangement under the following condition:

C1 C2
(a) Boys and girls alternate: (i) 5! × 6!
(b) No two girls sit together : (ii) 10! – 5! 6!
(c) All the girls sit together (iii) (5!)2 + (5!)2
(d) All the girls are never together : (iv) 2! 5! 5!

Using the digits 1, 2, 3, 4, 5, 6, 7, a number of 4 different digits is formed. Find

C1 C2
(a) How many numbers are formed? (i) 840
(b) How many number are exactly divisible by 2? (i) 200
(c) How many numbers are exactly divisible by 25? (iii) 360
(d) How many of these are exactly divisible by 4? (iv) 40

How many words (with or without dictionary meaning) can be made from the letters of the word MONDAY, assuming that no letter is repeated, if

C1 C2
(a) 4 letters are used at a time (i) 720
(b) All letters are used at a time (ii) 240
(c) All letters are used but the first is a vowel (iii) 360

If the letters of the word 'MOTHER' be permuted and all the words so formed (with or without meaning) be listed as in a dictionary, then the position of the word 'MOTHER' is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×