Advertisements
Advertisements
प्रश्न
Find x if `1/(6!) + 1/(7!) = x/(8!)`
उत्तर
Given that `1/(6!) + 1/(7!) = x/(8!)`
`1/(6!) + 1/(7*6!) = x/(8*7*6!)`
Cancelling all 6! we get
`1/1 + 1/7 = x/(8 xx 7)`
`(7 + 1)/7 = x/(8 xx 7)`
`8/7 = x/(8 xx 7)`
x = `8/7 xx 7 xx 8` = 64
APPEARS IN
संबंधित प्रश्न
Find r if `""^5P_r = 2^6 P_(r-1)`
Which of the following are true:
(2 +3)! = 2! + 3!
There are 10 lamps in a hall. Each one of them can be switched on independently. Find the number of ways in which the hall can be illuminated ?
Write the number of 5 digit numbers that can be formed using digits 0, 1 and 2 ?
The number of words that can be formed out of the letters of the word "ARTICLE" so that vowels occupy even places is
Number of all four digit numbers having different digits formed of the digits 1, 2, 3, 4 and 5 and divisible by 4 is
Evaluate `("n"!)/("r"!("n" - "r")!)` when n = 5 and r = 2.
Each of the digits 1, 1, 2, 3, 3 and 4 is written on a separate card. The six cards are then laid out in a row to form a 6-digit number. How many of these 6-digit numbers are divisible by 4?
If the letters of the word GARDEN are permuted in all possible ways and the strings thus formed are arranged in the dictionary order, then find the ranks of the words
GARDEN
Find the number of strings that can be made using all letters of the word THING. If these words are written as in a dictionary, what will be the 85th string?