Advertisements
Advertisements
प्रश्न
Find the number of strings that can be made using all letters of the word THING. If these words are written as in a dictionary, what will be the 85th string?
उत्तर
The given word is THING
Arranging the letters of the word in the dictionary order
We have G, H, I, N, T
The number of strings that can be made using all the letters T, H, I, N, G of the word
THING is = 5! = 120
The number of words beginning with G = 4!
The number of words beginning with H = 4!
The number of words beginning with I = 4!
Number of words so far formed = 4! + 4! + 4!
= 24 + 24 + 24
= 72 words
As the required word is in the 85th position
The required word must begin with N
Number of words beginning with NG = 3!
A number of words beginning with NH = 3!
Total number of words so far formed
= 72 + 3! + 3!
= 72 + 6 + 6
= 84 words
The next string is the required string.
It should begin with NI and its first word beginning with NI which is NIGHT
∴ 85th strings are NIGHT.
APPEARS IN
संबंधित प्रश्न
Find the number of 4-digit numbers that can be formed using the digits 1, 2, 3, 4, 5 if no digit is repeated. How many of these will be even?
Find x in each of the following:
Which of the following are true:
(2 × 3)! = 2! × 3!
How many numbers of four digits can be formed with the digits 1, 2, 3, 4, 5 if the digits can be repeated in the same number?
Three dice are rolled. Find the number of possible outcomes in which at least one die shows 5 ?
In how many ways can 4 letters be posted in 5 letter boxes?
If in a group of n distinct objects, the number of arrangements of 4 objects is 12 times the number of arrangements of 2 objects, then the number of objects is
If (n+2)! = 60[(n–1)!], find n
The number of permutation of n different things taken r at a time, when the repetition is allowed is:
Determine the number of permutations of the letters of the word SIMPLE if all are taken at a time?
A test consists of 10 multiple choice questions. In how many ways can the test be answered if each question has four choices?
How many strings are there using the letters of the word INTERMEDIATE, if the vowels and consonants are alternative
Each of the digits 1, 1, 2, 3, 3 and 4 is written on a separate card. The six cards are then laid out in a row to form a 6-digit number. How many of these 6-digit numbers are divisible by 4?
If the letters of the word FUNNY are permuted in all possible ways and the strings thus formed are arranged in the dictionary order, find the rank of the word FUNNY
In how many ways can 5 children be arranged in a line such that two particular children of them are always together
In a certain city, all telephone numbers have six digits, the first two digits always being 41 or 42 or 46 or 62 or 64. How many telephone numbers have all six digits distinct?
Five boys and five girls form a line. Find the number of ways of making the seating arrangement under the following condition:
C1 | C2 |
(a) Boys and girls alternate: | (i) 5! × 6! |
(b) No two girls sit together : | (ii) 10! – 5! 6! |
(c) All the girls sit together | (iii) (5!)2 + (5!)2 |
(d) All the girls are never together : | (iv) 2! 5! 5! |
If 1P1 + 2. 2p2 + 3. 3p3 + ....... 15. 15P15 = qPr – s, 0 ≤ s ≤ 1, then q+sCr–s is equal to ______.
Ten different letters of an alphabet are given. Words with five letters are formed from these given letters. Determine the number of words which have at least one letter repeated.