मराठी

The Number of Words that Can Be Formed Out of the Letters of the Word "Article" So that Vowels Occupy Even Places Is574, 36,754,144 - Mathematics

Advertisements
Advertisements

प्रश्न

The number of words that can be formed out of the letters of the word "ARTICLE" so that vowels occupy even places is

पर्याय

  • 574

  • 36

  • 754

  • 144

MCQ

उत्तर

144
The word ARTICLE consists of 3 vowels that have to be arranged in the three even places. This can be done in 3! ways.
And, the remaining 4 consonants can be arranged among themselves in 4! ways.
∴ Total number of ways = 3! x 4! = 144

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Permutations - Exercise 16.7 [पृष्ठ ४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 16 Permutations
Exercise 16.7 | Q 3 | पृष्ठ ४६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Evaluate 4! – 3!


Evaluate `(n!)/((n-r)!)`, when n = 9, r = 5


Find n if n – 1P3 : nP4 = 1 : 9


Find r if `""^5P_r = 2^6 P_(r-1)`


In how many ways can the letters of the word PERMUTATIONS be arranged if the words start with P and end with S.


In how many ways can the letters of the word PERMUTATIONS be arranged if the there are always 4 letters between P and S?


A coin is tossed three times and the outcomes are recorded. How many possible outcomes are there? How many possible outcomes if the coin is tossed four times? Five times? n times?


How many numbers of four digits can be formed with the digits 1, 2, 3, 4, 5 if the digits can be repeated in the same number?


Find the total number of ways in which 20 balls can be put into 5 boxes so that first box contains just one ball ?


In how many ways can 4 prizes be distributed among 5 students, when
(i) no student gets more than one prize?
(ii) a student may get any number of prizes?
(iii) no student gets all the prizes?


Evaluate each of the following:

8P3


Write the number of 5 digit numbers that can be formed using digits 0, 1 and 2 ?


Write the total number of possible outcomes in a throw of 3 dice in which at least one of the dice shows an even number.


The number of arrangements of the word "DELHI" in which E precedes I is


Find x if `1/(6!) + 1/(7!) = x/(8!)`


How many numbers lesser than 1000 can be formed using the digits 5, 6, 7, 8, and 9 if no digit is repeated?


  1. In how many ways can 8 identical beads be strung on a necklace?
  2. In how many ways can 8 boys form a ring?

Evaluate the following.

`(3! xx 0! + 0!)/(2!)`


Evaluate the following.

`(3! + 1!)/(2^2!)`


Evaluate the following.

`((3!)! xx 2!)/(5!)`


If n is a positive integer, then the number of terms in the expansion of (x + a)n is:


The number of permutation of n different things taken r at a time, when the repetition is allowed is:


If `""^10"P"_("r" - 1)` = 2 × 6Pr, find r


How many strings are there using the letters of the word INTERMEDIATE, if no two vowels are together


If the letters of the word GARDEN are permuted in all possible ways and the strings thus formed are arranged in the dictionary order, then find the ranks of the words
DANGER


If the letters of the word FUNNY are permuted in all possible ways and the strings thus formed are arranged in the dictionary order, find the rank of the word FUNNY


Find the sum of all 4-digit numbers that can be formed using digits 1, 2, 3, 4, and 5 repetitions not allowed?


Choose the correct alternative:
The product of r consecutive positive integers is divisible b


Choose the correct alternative:
If Pr stands for rPr then the sum of the series 1 + P1 + 2P2 + 3P3 + · · · + nPn is


The number of arrangements of the letters of the word BANANA in which two N's do not appear adjacently is ______.


In how many ways can 5 children be arranged in a line such that two particular children of them are never together.


Find the number of permutations of n distinct things taken r together, in which 3 particular things must occur together.


A five-digit number divisible by 3 is to be formed using the numbers 0, 1, 2, 3, 4 and 5 without repetitions. The total number of ways this can be done is ______.


The number of permutations of n different objects, taken r at a line, when repetitions are allowed, is ______.


The number of different words that can be formed from the letters of the word INTERMEDIATE such that two vowels never come together is ______.


Five boys and five girls form a line. Find the number of ways of making the seating arrangement under the following condition:

C1 C2
(a) Boys and girls alternate: (i) 5! × 6!
(b) No two girls sit together : (ii) 10! – 5! 6!
(c) All the girls sit together (iii) (5!)2 + (5!)2
(d) All the girls are never together : (iv) 2! 5! 5!

If m+nP2 = 90 and m–nP2 = 30, then (m, n) is given by ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×