मराठी

Find the Total Number of Ways in Which 20 Balls Can Be Put into 5 Boxes So that First Box Contains Just One Ball ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find the total number of ways in which 20 balls can be put into 5 boxes so that first box contains just one ball ?

उत्तर

Any one of the twenty balls can be put in the first box. Thus, there are twenty different ways for this.
Now, remaining 19 balls are to be put into the remaining 4 boxes. This can be done in`4^19` ways because there are four choices for each ball.
∴ Required number of ways =`20xx4^19`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Permutations - Exercise 16.2 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 16 Permutations
Exercise 16.2 | Q 44 | पृष्ठ १६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Evaluate 4! – 3!


if `1/(6!) + 1/(7!) = x/(8!)`, find x


How many 3-digit even numbers can be made using the digits 1, 2, 3, 4, 6, 7, if no digit is repeated?


Find r if `""^5P_r = 2^6 P_(r-1)`


Find r if `""^5P_r = 2^6 P_(r-1)`


How many words, with or without meaning, can be formed using all the letters of the word EQUATION, using each letter exactly once?


In how many of the distinct permutations of the letters in MISSISSIPPI do the four I’s not come together?


In how many ways can the letters of the word PERMUTATIONS be arranged if the words start with P and end with S.


Find x in each of the following:

\[\frac{x}{10!} = \frac{1}{8!} + \frac{1}{9!}\]

Find x in each of the following:

\[\frac{1}{6!} + \frac{1}{7!} = \frac{x}{8!}\]

If three six faced die each marked with numbers 1 to 6 on six faces, are thrown find the total number of possible outcomes ?


Write the number of all possible words that can be formed using the letters of the word 'MATHEMATICS'.


Write the number of numbers that can be formed using all for digits 1, 2, 3, 4 ?


The number of six letter words that can be formed using the letters of the word "ASSIST" in which S's alternate with other letters is


The number of arrangements of the word "DELHI" in which E precedes I is


The number of ways in which the letters of the word 'CONSTANT' can be arranged without changing the relative positions of the vowels and consonants is


If k + 5Pk + 1 =\[\frac{11 (k - 1)}{2}\]. k + 3Pk , then the values of k are


The number of arrangements of the letters of the word BHARAT taking 3 at a time is


The number of different ways in which 8 persons can stand in a row so that between two particular persons A and B there are always two persons, is


In a room there are 12 bulbs of the same wattage, each having a separate switch. The number of ways to light the room with different amounts of illumination is


How many 6-digit telephone numbers can be constructed with the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 if each numbers starts with 35 and no digit appear more than once?


The greatest positive integer which divide n(n + 1) (n + 2) (n + 3) for all n ∈ N is:


For all n > 0, nC1 + nC2 + nC3 + …… + nCn is equal to:


The number of words with or without meaning that can be formed using letters of the word “EQUATION”, with no repetition of letters is:


The number of permutation of n different things taken r at a time, when the repetition is allowed is:


If `""^(("n"  – 1))"P"_3 : ""^"n""P"_4` = 1 : 10 find n


Determine the number of permutations of the letters of the word SIMPLE if all are taken at a time?


A student appears in an objective test which contain 5 multiple choice questions. Each question has four choices out of which one correct answer.

What is the maximum number of different answers can the students give?


How many strings can be formed from the letters of the word ARTICLE, so that vowels occupy the even places?


8 women and 6 men are standing in a line. In how many arrangements will all 6 men be standing next to one another?


8 women and 6 men are standing in a line. In how many arrangements will no two men be standing next to one another?


A coin is tossed 8 times, how many different sequences of heads and tails are possible?


Each of the digits 1, 1, 2, 3, 3 and 4 is written on a separate card. The six cards are then laid out in a row to form a 6-digit number. How many distinct 6-digit numbers are there?


Find the sum of all 4-digit numbers that can be formed using digits 0, 2, 5, 7, 8 without repetition?


The number of arrangements of the letters of the word BANANA in which two N's do not appear adjacently is ______.


In how many ways 3 mathematics books, 4 history books, 3 chemistry books and 2 biology books can be arranged on a shelf so that all books of the same subjects are together.


In the permutations of n things, r taken together, the number of permutations in which m particular things occur together is `""^(n - m)"P"_(r - m) xx ""^r"P"_m`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×