Advertisements
Advertisements
प्रश्न
The number of six letter words that can be formed using the letters of the word "ASSIST" in which S's alternate with other letters is
पर्याय
12
24
18
none of these.
उत्तर
12
All S's can be placed either at even places or at odd places, i.e. in 2 ways.
The remaining letters can be placed at the remaining places in 3!, i.e. in 6 ways.
∴ Total number of ways = 6 x 2 = 12
APPEARS IN
संबंधित प्रश्न
How many 3-digit numbers can be formed by using the digits 1 to 9 if no digit is repeated?
Find the number of 4-digit numbers that can be formed using the digits 1, 2, 3, 4, 5 if no digit is repeated. How many of these will be even?
Find r if `""^5P_r = 2^6 P_(r-1)`
In how many ways can the letters of the word ASSASSINATION be arranged so that all the S’s are together?
A customer forgets a four-digits code for an Automatic Teller Machine (ATM) in a bank. However, he remembers that this code consists of digits 3, 5, 6 and 9. Find the largest possible number of trials necessary to obtain the correct code.
If three six faced die each marked with numbers 1 to 6 on six faces, are thrown find the total number of possible outcomes ?
Three dice are rolled. Find the number of possible outcomes in which at least one die shows 5 ?
Evaluate each of the following:
Evaluate each of the following:
P(6, 4)
Write the number of 5 digit numbers that can be formed using digits 0, 1 and 2 ?
Write the number of words that can be formed out of the letters of the word 'COMMITTEE' ?
Write the number of ways in which 6 men and 5 women can dine at a round table if no two women sit together ?
Write the number of ways in which 5 boys and 3 girls can be seated in a row so that each girl is between 2 boys ?
Write the remainder obtained when 1! + 2! + 3! + ... + 200! is divided by 14 ?
The number of ways in which the letters of the word 'CONSTANT' can be arranged without changing the relative positions of the vowels and consonants is
If the letters of the word KRISNA are arranged in all possible ways and these words are written out as in a dictionary, then the rank of the word KRISNA is
The number of words that can be made by re-arranging the letters of the word APURBA so that vowels and consonants are alternate is
If nP4 = 12(nP2), find n.
If `""^10"P"_("r" - 1)` = 2 × 6Pr, find r
Three men have 4 coats, 5 waist coats and 6 caps. In how many ways can they wear them?
A test consists of 10 multiple choice questions. In how many ways can the test be answered if the first four questions have three choices and the remaining have five choices?
A student appears in an objective test which contain 5 multiple choice questions. Each question has four choices out of which one correct answer.
How will the answer change if each question may have more than one correct answers?
8 women and 6 men are standing in a line. In how many arrangements will all 6 men be standing next to one another?
A coin is tossed 8 times, how many different sequences of heads and tails are possible?
Each of the digits 1, 1, 2, 3, 3 and 4 is written on a separate card. The six cards are then laid out in a row to form a 6-digit number. How many of these 6-digit numbers are divisible by 4?
Choose the correct alternative:
If Pr stands for rPr then the sum of the series 1 + P1 + 2P2 + 3P3 + · · · + nPn is
In how many ways 3 mathematics books, 4 history books, 3 chemistry books and 2 biology books can be arranged on a shelf so that all books of the same subjects are together.
The number of signals that can be sent by 6 flags of different colours taking one or more at a time is ______.
Find the number of permutations of n distinct things taken r together, in which 3 particular things must occur together.
A five-digit number divisible by 3 is to be formed using the numbers 0, 1, 2, 3, 4 and 5 without repetitions. The total number of ways this can be done is ______.
The total number of 9 digit numbers which have all different digits is ______.
The number of permutations of n different objects, taken r at a line, when repetitions are allowed, is ______.
In the permutations of n things, r taken together, the number of permutations in which m particular things occur together is `""^(n - m)"P"_(r - m) xx ""^r"P"_m`.
Using the digits 1, 2, 3, 4, 5, 6, 7, a number of 4 different digits is formed. Find
C1 | C2 |
(a) How many numbers are formed? | (i) 840 |
(b) How many number are exactly divisible by 2? | (i) 200 |
(c) How many numbers are exactly divisible by 25? | (iii) 360 |
(d) How many of these are exactly divisible by 4? | (iv) 40 |
Ten different letters of an alphabet are given. Words with five letters are formed from these given letters. Determine the number of words which have at least one letter repeated.
If m+nP2 = 90 and m–nP2 = 30, then (m, n) is given by ______.