Advertisements
Advertisements
प्रश्न
The number of six letter words that can be formed using the letters of the word "ASSIST" in which S's alternate with other letters is
विकल्प
12
24
18
none of these.
उत्तर
12
All S's can be placed either at even places or at odd places, i.e. in 2 ways.
The remaining letters can be placed at the remaining places in 3!, i.e. in 6 ways.
∴ Total number of ways = 6 x 2 = 12
APPEARS IN
संबंधित प्रश्न
Evaluate `(n!)/((n-r)!)`, when n = 9, r = 5
How many 3-digit numbers can be formed by using the digits 1 to 9 if no digit is repeated?
How many 4-digit numbers are there with no digit repeated?
Find r if `""^5P_r = 2^6 P_(r-1)`
In how many ways can the letters of the word PERMUTATIONS be arranged if the words start with P and end with S.
Which of the following are true:
(2 +3)! = 2! + 3!
Which of the following are true:
(2 × 3)! = 2! × 3!
How many natural numbers less than 1000 can be formed from the digits 0, 1, 2, 3, 4, 5 when a digit may be repeated any number of times?
Three dice are rolled. Find the number of possible outcomes in which at least one die shows 5 ?
In how many ways can 7 letters be posted in 4 letter boxes?
There are 10 lamps in a hall. Each one of them can be switched on independently. Find the number of ways in which the hall can be illuminated ?
Evaluate each of the following:
8P3
Evaluate each of the following:
P(6, 4)
Write the number of ways in which 6 men and 5 women can dine at a round table if no two women sit together ?
The number of ways in which the letters of the word ARTICLE can be arranged so that even places are always occupied by consonants is
Find x if `1/(6!) + 1/(7!) = x/(8!)`
If nP4 = 12(nP2), find n.
How many 6-digit telephone numbers can be constructed with the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 if each numbers starts with 35 and no digit appear more than once?
Find the number of arrangements that can be made out of the letters of the word “ASSASSINATION”.
Evaluate the following.
`(3! xx 0! + 0!)/(2!)`
Evaluate the following.
`(3! + 1!)/(2^2!)`
The number of permutation of n different things taken r at a time, when the repetition is allowed is:
If `""^(("n" – 1))"P"_3 : ""^"n""P"_4` = 1 : 10 find n
If `""^10"P"_("r" - 1)` = 2 × 6Pr, find r
Suppose 8 people enter an event in a swimming meet. In how many ways could the gold, silver and bronze prizes be awarded?
A test consists of 10 multiple choice questions. In how many ways can the test be answered if the first four questions have three choices and the remaining have five choices?
8 women and 6 men are standing in a line. How many arrangements are possible if any individual can stand in any position?
8 women and 6 men are standing in a line. In how many arrangements will all 6 men be standing next to one another?
Find the distinct permutations of the letters of the word MISSISSIPPI?
How many strings are there using the letters of the word INTERMEDIATE, if vowels are never together
Each of the digits 1, 1, 2, 3, 3 and 4 is written on a separate card. The six cards are then laid out in a row to form a 6-digit number. How many of these 6-digit numbers are divisible by 4?
If the letters of the word GARDEN are permuted in all possible ways and the strings thus formed are arranged in the dictionary order, then find the ranks of the words
GARDEN
If the letters of the word GARDEN are permuted in all possible ways and the strings thus formed are arranged in the dictionary order, then find the ranks of the words
DANGER
Find the sum of all 4-digit numbers that can be formed using digits 1, 2, 3, 4, and 5 repetitions not allowed?
Find the number of permutations of n distinct things taken r together, in which 3 particular things must occur together.
There are 10 persons named P1, P2, P3, ... P10. Out of 10 persons, 5 persons are to be arranged in a line such that in each arrangement P1 must occur whereas P4 and P5 do not occur. Find the number of such possible arrangements.
How many words (with or without dictionary meaning) can be made from the letters of the word MONDAY, assuming that no letter is repeated, if
C1 | C2 |
(a) 4 letters are used at a time | (i) 720 |
(b) All letters are used at a time | (ii) 240 |
(c) All letters are used but the first is a vowel | (iii) 360 |