Advertisements
Advertisements
प्रश्न
Which of the following are true:
(2 × 3)! = 2! × 3!
उत्तर
LHS = (2 × 3)!
= 6!
= 720
RHS = 2! × 3!
= 2 × 6
= 12
LHS ≠ RHS
Thus, (ii) is false.
APPEARS IN
संबंधित प्रश्न
Evaluate 8!
Find r if `""^5P_r = 2^6 P_(r-1)`
How many words, with or without meaning, can be formed using all the letters of the word EQUATION, using each letter exactly once?
A customer forgets a four-digits code for an Automatic Teller Machine (ATM) in a bank. However, he remembers that this code consists of digits 3, 5, 6 and 9. Find the largest possible number of trials necessary to obtain the correct code.
How many 5-digit telephone numbers can be constructed using the digits 0 to 9. If each number starts with 67 and no digit appears more than once?
Find the number of ways in which one can post 5 letters in 7 letter boxes ?
Write the number of numbers that can be formed using all for digits 1, 2, 3, 4 ?
The number of words that can be formed out of the letters of the word "ARTICLE" so that vowels occupy even places is
The number of different signals which can be given from 6 flags of different colours taking one or more at a time, is
The number of arrangements of the word "DELHI" in which E precedes I is
The number of ways to arrange the letters of the word CHEESE are
If in a group of n distinct objects, the number of arrangements of 4 objects is 12 times the number of arrangements of 2 objects, then the number of objects is
The number of arrangements of the letters of the word BHARAT taking 3 at a time is
How many five digits telephone numbers can be constructed using the digits 0 to 9 If each number starts with 67 with no digit appears more than once?
How many 6-digit telephone numbers can be constructed with the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 if each numbers starts with 35 and no digit appear more than once?
Find the number of arrangements that can be made out of the letters of the word “ASSASSINATION”.
- In how many ways can 8 identical beads be strung on a necklace?
- In how many ways can 8 boys form a ring?
Evaluate the following.
`(3! xx 0! + 0!)/(2!)`
If n is a positive integer, then the number of terms in the expansion of (x + a)n is:
For all n > 0, nC1 + nC2 + nC3 + …… + nCn is equal to:
The number of ways to arrange the letters of the word “CHEESE”:
The number of permutation of n different things taken r at a time, when the repetition is allowed is:
Determine the number of permutations of the letters of the word SIMPLE if all are taken at a time?
A test consists of 10 multiple choice questions. In how many ways can the test be answered if question number n has n + 1 choices?
How many strings are there using the letters of the word INTERMEDIATE, if the vowels and consonants are alternative
How many strings are there using the letters of the word INTERMEDIATE, if vowels are never together
Each of the digits 1, 1, 2, 3, 3 and 4 is written on a separate card. The six cards are then laid out in a row to form a 6-digit number. How many of these 6-digit numbers are divisible by 4?
The number of arrangements of the letters of the word BANANA in which two N's do not appear adjacently is ______.
In how many ways can 5 children be arranged in a line such that two particular children of them are always together
In how many ways 3 mathematics books, 4 history books, 3 chemistry books and 2 biology books can be arranged on a shelf so that all books of the same subjects are together.
Three married couples are to be seated in a row having six seats in a cinema hall. If spouses are to be seated next to each other, in how many ways can they be seated? Find also the number of ways of their seating if all the ladies sit together.
Ten different letters of alphabet are given. Words with five letters are formed from these given letters. Then the number of words which have atleast one letter repeated is ______.
In the permutations of n things, r taken together, the number of permutations in which m particular things occur together is `""^(n - m)"P"_(r - m) xx ""^r"P"_m`.
Using the digits 1, 2, 3, 4, 5, 6, 7, a number of 4 different digits is formed. Find
C1 | C2 |
(a) How many numbers are formed? | (i) 840 |
(b) How many number are exactly divisible by 2? | (i) 200 |
(c) How many numbers are exactly divisible by 25? | (iii) 360 |
(d) How many of these are exactly divisible by 4? | (iv) 40 |
How many words (with or without dictionary meaning) can be made from the letters of the word MONDAY, assuming that no letter is repeated, if
C1 | C2 |
(a) 4 letters are used at a time | (i) 720 |
(b) All letters are used at a time | (ii) 240 |
(c) All letters are used but the first is a vowel | (iii) 360 |
Ten different letters of an alphabet are given. Words with five letters are formed from these given letters. Determine the number of words which have at least one letter repeated.