हिंदी

Prove That: N! (N + 2) = N! + (N + 1)! - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that: n! (n + 2) = n! + (n + 1)!

उत्तर

RHS = n! + (n + 1)!
        =  n! + (n + 1)(n!)
        = n! ( 1+ n + 1)
        = n! (n+2) = LHS
Hence, proved.

shaalaa.com
Factorial N (N!) Permutations and Combinations
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Permutations - Exercise 16.1 [पृष्ठ ४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 16 Permutations
Exercise 16.1 | Q 6 | पृष्ठ ४

संबंधित प्रश्न

Convert the following products into factorials:

1 · 3 · 5 · 7 · 9 ... (2n − 1)


If (n + 2)! = 60 [(n − 1)!], find n. 


If (n + 1)! = 90 [(n − 1)!], find n.


Prove that: 

\[\frac{n!}{(n - r)!}\] = n (n − 1) (n − 2) ... (n − (r − 1))

If P(11, r) = P (12, r − 1) find r.


If P (n, 4) = 12 . P (n, 2), find n.


In how many ways can five children stand in a queue?


Four books, one each in Chemistry, Physics, Biology and Mathematics, are to be arranged in a shelf. In how many ways can this be done?


How many words, with or without meaning, can be formed by using the letters of the word 'TRIANGLE'?


How many three-digit numbers are there, with no digit repeated?


In how many ways can 6 boys and 5 girls be arranged for a group photograph if the girls are to sit on chairs in a row and the boys are to stand in a row behind them?


How many 3-digit even number can be made using the digits 1, 2, 3, 4, 5, 6, 7, if no digits is repeated?


All the letters of the word 'EAMCOT' are arranged in different possible ways. Find the number of arrangements in which no two vowels are adjacent to each other.


How many permutations can be formed by the letters of the word, 'VOWELS', when

each word begins with O and ends with L?


How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if all letters are used but first is vowel.


Find the number of words formed by permuting all the letters of the following words:
INDEPENDENCE


Find the number of words formed by permuting all the letters of the following words:

RUSSIA


In how many ways can the letters of the word 'ALGEBRA' be arranged without changing the relative order of the vowels and consonants?


Find the number of numbers, greater than a million, that can be formed with the digits 2, 3, 0, 3, 4, 2, 3.


How many different arrangements can be made by using all the letters in the word 'MATHEMATICS'. How many of them begin with C? How many of them begin with T?


How many numbers greater than 1000000 can be formed by using the digits 1, 2, 0, 2, 4, 2, 4?


If the letters of the word 'MOTHER' are written in all possible orders and these words are written out as in a dictionary, find the rank of the word 'MOTHER'.


In how many ways can the letters of the word "INTERMEDIATE" be arranged so that:

the relative order of vowels and consonants do not alter?


The letters of the word 'ZENITH' are written in all possible orders. How many words are possible if all these words are written out as in a dictionary? What is the rank of the word 'ZENITH'?


Prove that the product of 2n consecutive negative integers is divisible by (2n)!


Prove that: 4nC2n : 2nCn = [1 · 3 · 5 ... (4n − 1)] : [1 · 3 · 5 ... (2n − 1)]2.


Evaluate

\[^ {20}{}{C}_5 + \sum^5_{r = 2} {}^{25 - r} C_4\]

Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:

\[\frac{^{n}{}{C}_r}{^{n}{}{C}_{r - 1}} = \frac{n - r + 1}{r}\]

Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
n · n − 1Cr − 1 = (n − r + 1) nCr − 1


Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:

\[\frac{^{n}{}{C}_r}{^{n - 1}{}{C}_{r - 1}} = \frac{n}{r}\]

How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if  all letters are used at a time 


Find the number of permutations of n distinct things taken together, in which 3 particular things must occur together.


Write the expression nCr +1 + nCr − 1 + 2 × nCr in the simplest form.


Write the maximum number of points of intersection of 8 straight lines in a plane.


Write the number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×