हिंदी

Find the Number of Numbers, Greater than a Million, that Can Be Formed with the Digits 2, 3, 0, 3, 4, 2, 3. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the number of numbers, greater than a million, that can be formed with the digits 2, 3, 0, 3, 4, 2, 3.

उत्तर

One million (1,000,000) consists of 7 digits.
We have digits 2, 3, 0, 3, 4, 2 and 3.
Numbers formed by arranging all these seven digits =\[\frac{7!}{2!3!}\]
But, these numbers also include the numbers whose first digit is 0.
This is invalid as in that case the number would be less than a million.
Total numbers in which the first digit is fixed as 0 = Permutations of the remaining 6 digits =\[\frac{6!}{2!3!}\]

Numbers that are greater than 1 million =\[\frac{7!}{2!3!}\] - \[\frac{6!}{2!3!}\]= 360

shaalaa.com
Factorial N (N!) Permutations and Combinations
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Permutations - Exercise 16.5 [पृष्ठ ४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 16 Permutations
Exercise 16.5 | Q 14 | पृष्ठ ४३

संबंधित प्रश्न

Convert the following products into factorials: 

3 · 6 · 9 · 12 · 15 · 18


Convert the following products into factorials: 

(n + 1) (n + 2) (n + 3) ... (2n)


Prove that: n! (n + 2) = n! + (n + 1)!


If (n + 2)! = 60 [(n − 1)!], find n. 


If (n + 3)! = 56 [(n + 1)!], find n.


Prove that:

\[\frac{n!}{(n - r)! r!} + \frac{n!}{(n - r + 1)! (r - 1)!} = \frac{(n + 1)!}{r! (n - r + 1)!}\]


If P (5, r) = P (6, r − 1), find r ?


If nP4 = 360, find the value of n.


If P (n, 4) = 12 . P (n, 2), find n.


Prove that:1 . P (1, 1) + 2 . P (2, 2) + 3 . P (3, 3) + ... + n . P (nn) = P (n + 1, n + 1) − 1.


If n +5Pn +1 =\[\frac{11 (n - 1)}{2}\]n +3Pn, find n.


How many three-digit numbers are there, with distinct digits, with each digit odd?


There are 6 items in column A and 6 items in column B. A student is asked to match each item in column A with an item in column B. How many possible, correct or incorrect, answers are there to this question?


How many three-digit numbers are there, with no digit repeated?


In how many ways can the letters of the word 'FAILURE' be arranged so that the consonants may occupy only odd positions?


In how many ways can the letters of the word 'STRANGE' be arranged so that

the vowels come together?

 


In how many ways can the letters of the word 'STRANGE' be arranged so that

the vowels never come together? 


In how many ways can the letters of the word 'STRANGE' be arranged so that

the vowels occupy only the odd places?


How many permutations can be formed by the letters of the word, 'VOWELS', when

there is no restriction on letters?


Find the number of words formed by permuting all the letters of the following words:

RUSSIA


Find the number of words formed by permuting all the letters of the following words:
SERIES


How many numbers can be formed with the digits 1, 2, 3, 4, 3, 2, 1 so that the odd digits always occupy the odd places?


How many different signals can be made from 4 red, 2 white and 3 green flags by arranging all of them vertically on a flagstaff?


How many different numbers, greater than 50000 can be formed with the digits 0, 1, 1, 5, 9.


How many permutations of the letters of the word 'MADHUBANI' do not begin with M but end with I?


How many different arrangements can be made by using all the letters in the word 'MATHEMATICS'. How many of them begin with C? How many of them begin with T?


In how many ways can the letters of the word ASSASSINATION be arranged so that all the S's are together?


Find the total number of permutations of the letters of the word 'INSTITUTE'.


If the letters of the word 'LATE' be permuted and the words so formed be arranged as in a dictionary, find the rank of the word LATE.


In how many ways can the letters of the word "INTERMEDIATE" be arranged so that:

the relative order of vowels and consonants do not alter?


Prove that: 4nC2n : 2nCn = [1 · 3 · 5 ... (4n − 1)] : [1 · 3 · 5 ... (2n − 1)]2.


Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:

 nCr + 2 · nCr − 1 + nCr − 2 = n + 2Cr.


How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if  all letters are used at a time 


Find the number of permutations of n distinct things taken together, in which 3 particular things must occur together.


If 35Cn +7 = 35C4n − 2 , then write the values of n.


Write the number of diagonals of an n-sided polygon.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×