Advertisements
Advertisements
प्रश्न
If P (n, 4) = 12 . P (n, 2), find n.
उत्तर
P (n, 4) = 12 . P (n, 2)
\[\Rightarrow \frac{n!}{\left( n - 4 \right)!} = 12 \times \frac{n!}{\left( n - 2 \right)!}\]
\[ \Rightarrow \frac{\left( n - 2 \right)!}{\left( n - 4 \right)!} = 12 \times \frac{n!}{n!}\]
\[ \Rightarrow \frac{\left( n - 2 \right)\left( n - 3 \right)\left( n - 4 \right)!}{\left( n - 4 \right)!} = 12\]
\[ \Rightarrow \left( n - 2 \right)\left( n - 3 \right) = 12\]
\[ \Rightarrow \left( n - 2 \right)\left( n - 3 \right) = 4 \times 3\]
\[\text{On comparing the LHS and the RHS, we get}: \]
\[n - 2 = 4\]
\[ \Rightarrow n = 6\]
APPEARS IN
संबंधित प्रश्न
Convert the following products into factorials:
3 · 6 · 9 · 12 · 15 · 18
Prove that:
Prove that:
\[\frac{n!}{(n - r)! r!} + \frac{n!}{(n - r + 1)! (r - 1)!} = \frac{(n + 1)!}{r! (n - r + 1)!}\]
Prove that:
If P (5, r) = P (6, r − 1), find r ?
If 5 P(4, n) = 6. P (5, n − 1), find n ?
If P(11, r) = P (12, r − 1) find r.
If P (n, 5) : P (n, 3) = 2 : 1, find n.
If n +5Pn +1 =\[\frac{11 (n - 1)}{2}\]n +3Pn, find n.
In how many ways can five children stand in a queue?
From among the 36 teachers in a school, one principal and one vice-principal are to be appointed. In how many ways can this be done?
How many words, with or without meaning, can be formed by using the letters of the word 'TRIANGLE'?
If a denotes the number of permutations of (x + 2) things taken all at a time, b the number of permutations of x things taken 11 at a time and c the number of permutations of x − 11 things taken all at a time such that a = 182 bc, find the value of x.
In how many ways can the letters of the word 'FAILURE' be arranged so that the consonants may occupy only odd positions?
In how many ways can the letters of the word 'STRANGE' be arranged so that
the vowels come together?
In how many ways can the letters of the word 'STRANGE' be arranged so that
the vowels never come together?
How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:
the vowels are always together?
How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:
the vowels always occupy even places?
How many permutations can be formed by the letters of the word, 'VOWELS', when
each word begins with E?
How many words can be formed out of the letters of the word 'ARTICLE', so that vowels occupy even places?
How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if all letters are used but first is vowel.
How many three letter words can be made using the letters of the word 'ORIENTAL'?
How many words can be formed with the letters of the word 'UNIVERSITY', the vowels remaining together?
Find the total number of arrangements of the letters in the expression a3 b2 c4 when written at full length.
How many numbers can be formed with the digits 1, 2, 3, 4, 3, 2, 1 so that the odd digits always occupy the odd places?
How many different numbers, greater than 50000 can be formed with the digits 0, 1, 1, 5, 9.
Find the number of numbers, greater than a million, that can be formed with the digits 2, 3, 0, 3, 4, 2, 3.
In how many ways can the letters of the word ASSASSINATION be arranged so that all the S's are together?
Find the total number of ways in which six '+' and four '−' signs can be arranged in a line such that no two '−' signs occur together.
There are 10 persons named\[P_1 , P_2 , P_3 , . . . . , P_{10}\]
Out of 10 persons, 5 persons are to be arranged in a line such that in each arrangement P1 must occur whereas P4 and P5 do not occur. Find the number of such possible arrangements.
How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if (i) 4 letters are used at a time
How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if all letters are used at a time
If 35Cn +7 = 35C4n − 2 , then write the values of n.
Write the number of diagonals of an n-sided polygon.
Write the number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines.
Write the total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants.