हिंदी

If P (N − 1, 3) : P (N, 4) = 1 : 9, Find N. - Mathematics

Advertisements
Advertisements

प्रश्न

If P (n − 1, 3) : P (n, 4) = 1 : 9, find n.

उत्तर

P (n − 1, 3):P (n, 4) = 1:9

\[\Rightarrow \frac{\left( n - 1 \right)!}{(n - 1 - 3)!} \times \frac{(n - 4)!}{(n)!} = \frac{1}{9}\]
\[ \Rightarrow \frac{\left( n - 1 \right)!}{\left( n - 4 \right)!} \times \frac{\left( n - 4 \right)!}{n!} = \frac{1}{9}\]
\[ \Rightarrow \frac{\left( n - 1 \right)!}{n!} = \frac{1}{9}\]
\[ \Rightarrow \frac{\left( n - 1 \right)!}{n\left( n - 1 \right)!} = \frac{1}{9}\]
\[ \Rightarrow \frac{1}{n} = \frac{1}{9}\]
\[ \Rightarrow n = 9\]

shaalaa.com
Factorial N (N!) Permutations and Combinations
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Permutations - Exercise 16.3 [पृष्ठ २८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 16 Permutations
Exercise 16.3 | Q 9 | पृष्ठ २८

संबंधित प्रश्न

If (n + 1)! = 90 [(n − 1)!], find n.


If \[\frac{(2n)!}{3! (2n - 3)!}\]  and \[\frac{n!}{2! (n - 2)!}\]  are in the ratio 44 : 3, find n.

 

 


If P (9, r) = 3024, find r.


If P (2n − 1, n) : P (2n + 1, n − 1) = 22 : 7 find n.


In how many ways can five children stand in a queue?


Four books, one each in Chemistry, Physics, Biology and Mathematics, are to be arranged in a shelf. In how many ways can this be done?


How many three-digit numbers are there, with distinct digits, with each digit odd?


How many words, with or without meaning, can be formed by using the letters of the word 'TRIANGLE'?


There are 6 items in column A and 6 items in column B. A student is asked to match each item in column A with an item in column B. How many possible, correct or incorrect, answers are there to this question?


In how many ways can the letters of the word 'STRANGE' be arranged so that

the vowels come together?

 


How many words can be formed from the letters of the word 'SUNDAY'? How many of these begin with D?


How many words can be formed out of the letters of the word, 'ORIENTAL', so that the vowels always occupy the odd places?


How many permutations can be formed by the letters of the word, 'VOWELS', when
each word begins with E?


How many permutations can be formed by the letters of the word, 'VOWELS', when

each word begins with O and ends with L?


How many words can be formed out of the letters of the word 'ARTICLE', so that vowels occupy even places?


How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if 4 letters are used at a time?


How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if all letters are used at a time.


Find the number of words formed by permuting all the letters of the following words:
EXERCISES


In how many ways can the letters of the word 'ALGEBRA' be arranged without changing the relative order of the vowels and consonants?


How many words can be formed by arranging the letters of the word 'MUMBAI' so that all M's come together?


How many number of four digits can be formed with the digits 1, 3, 3, 0?


How many words can be formed from the letters of the word 'SERIES' which start with S and end with S?


How many permutations of the letters of the word 'MADHUBANI' do not begin with M but end with I?


In how many ways can the letters of the word ASSASSINATION be arranged so that all the S's are together?


If the letters of the word 'MOTHER' are written in all possible orders and these words are written out as in a dictionary, find the rank of the word 'MOTHER'.


Find the total number of ways in which six '+' and four '−' signs can be arranged in a line such that no two '−' signs occur together.


The letters of the word 'ZENITH' are written in all possible orders. How many words are possible if all these words are written out as in a dictionary? What is the rank of the word 'ZENITH'?


Prove that: 4nC2n : 2nCn = [1 · 3 · 5 ... (4n − 1)] : [1 · 3 · 5 ... (2n − 1)]2.


Evaluate

\[^ {20}{}{C}_5 + \sum^5_{r = 2} {}^{25 - r} C_4\]

Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:

\[\frac{^{n}{}{C}_r}{^{n - 1}{}{C}_{r - 1}} = \frac{n}{r}\]

How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if all letters are used but first letter is a vowel?


Write the maximum number of points of intersection of 8 straight lines in a plane.


Write the number of ways in which 12 boys may be divided into three groups of 4 boys each.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×