Advertisements
Advertisements
प्रश्न
Four books, one each in Chemistry, Physics, Biology and Mathematics, are to be arranged in a shelf. In how many ways can this be done?
उत्तर
Here, all the four books are to be arranged on a shelf. This means that we have to find the number of arrangements of the books, taken all at a time.
⇒ 4P4
Now, nPn = n!
Similarly, 4P4 = 4! = 24
APPEARS IN
संबंधित प्रश्न
If (n + 1)! = 90 [(n − 1)!], find n.
Prove that:
Prove that:
\[\frac{n!}{(n - r)! r!} + \frac{n!}{(n - r + 1)! (r - 1)!} = \frac{(n + 1)!}{r! (n - r + 1)!}\]
If P (n, 5) = 20. P(n, 3), find n ?
If nP4 = 360, find the value of n.
If P (9, r) = 3024, find r.
If P (n, 4) = 12 . P (n, 2), find n.
If P (n − 1, 3) : P (n, 4) = 1 : 9, find n.
If P (2n − 1, n) : P (2n + 1, n − 1) = 22 : 7 find n.
If P (n, 5) : P (n, 3) = 2 : 1, find n.
From among the 36 teachers in a school, one principal and one vice-principal are to be appointed. In how many ways can this be done?
How many words, with or without meaning, can be formed by using all the letters of the word 'DELHI', using each letter exactly once?
Find the number of 4-digit numbers that can be formed using the digits 1, 2, 3, 4, 5, if no digit is repeated? How many of these will be even?
All the letters of the word 'EAMCOT' are arranged in different possible ways. Find the number of arrangements in which no two vowels are adjacent to each other.
In how many ways can the letters of the word 'STRANGE' be arranged so that
the vowels occupy only the odd places?
How many words can be formed from the letters of the word 'SUNDAY'? How many of these begin with D?
How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:
the letters P and I respectively occupy first and last place?
How many permutations can be formed by the letters of the word, 'VOWELS', when
each word begins with O and ends with L?
How many permutations can be formed by the letters of the word, 'VOWELS', when
all consonants come together?
Find the number of words formed by permuting all the letters of the following words:
INTERMEDIATE
Find the number of words formed by permuting all the letters of the following words:
SERIES
Find the number of words formed by permuting all the letters of the following words:
EXERCISES
How many words can be formed with the letters of the word 'UNIVERSITY', the vowels remaining together?
How many words can be formed with the letters of the word 'PARALLEL' so that all L's do not come together?
How many different signals can be made from 4 red, 2 white and 3 green flags by arranging all of them vertically on a flagstaff?
In how many ways can the letters of the word 'ARRANGE' be arranged so that the two R's are never together?
In how many ways can the letters of the word
"INTERMEDIATE" be arranged so that:the vowels always occupy even places?
Prove that the product of 2n consecutive negative integers is divisible by (2n)!
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if all letters are used but first letter is a vowel?
Write the number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines.
Write the number of ways in which 5 red and 4 white balls can be drawn from a bag containing 10 red and 8 white balls.