हिंदी

In How Many Ways Can the Letters of the Word 'Arrange' Be Arranged So that the Two R'S Are Never Together? - Mathematics

Advertisements
Advertisements

प्रश्न

In how many ways can the letters of the word 'ARRANGE' be arranged so that the two R's are never together?

उत्तर

The word ARRANGE consists of 7 letters including two Rs and two As, which can be arranged in\[\frac{7!}{2!2!}\]ways.

∴ Total number of words that can be formed using the letters of the word ARRANGE = 1260
Number of words in which the two Rs are always together = Considering both Rs as a single entity
 = Arrangements of  6 things of which two are same (two As)

=\[\frac{6!}{2!}\]

= 360

Number of words in which the two Rs are never together = Total number of words- Number of words in which the two Rs are always together

= 1260 - 360= 900
shaalaa.com
Factorial N (N!) Permutations and Combinations
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Permutations - Exercise 16.5 [पृष्ठ ४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 16 Permutations
Exercise 16.5 | Q 10 | पृष्ठ ४३

संबंधित प्रश्न

Convert the following products into factorials:

5 · 6 · 7 · 8 · 9 · 10


Convert the following products into factorials: 

(n + 1) (n + 2) (n + 3) ... (2n)


Convert the following products into factorials:

1 · 3 · 5 · 7 · 9 ... (2n − 1)


If P (5, r) = P (6, r − 1), find r ?


If 5 P(4, n) = 6. P (5, n − 1), find n ?


If P (n, 5) = 20. P(n, 3), find n ?


If nP4 = 360, find the value of n.


Prove that:1 . P (1, 1) + 2 . P (2, 2) + 3 . P (3, 3) + ... + n . P (nn) = P (n + 1, n + 1) − 1.


From among the 36 teachers in a school, one principal and one vice-principal are to be appointed. In how many ways can this be done?


Find the number of different 4-letter words, with or without meanings, that can be formed from the letters of the word 'NUMBER'.


How many words, with or without meaning, can be formed by using all the letters of the word 'DELHI', using each letter exactly once?


In how many ways can 6 boys and 5 girls be arranged for a group photograph if the girls are to sit on chairs in a row and the boys are to stand in a row behind them?


How many words can be formed out of the letters of the word, 'ORIENTAL', so that the vowels always occupy the odd places?


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the letters P and I respectively occupy first and last place?


How many words can be formed out of the letters of the word 'ARTICLE', so that vowels occupy even places?


How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if all letters are used at a time.


How many three letter words can be made using the letters of the word 'ORIENTAL'?


Find the number of words formed by permuting all the letters of the following words:

INDIA


Find the number of words formed by permuting all the letters of the following words:

RUSSIA


Find the number of words formed by permuting all the letters of the following words:
SERIES


How many words can be formed by arranging the letters of the word 'MUMBAI' so that all M's come together?


How many different numbers, greater than 50000 can be formed with the digits 0, 1, 1, 5, 9.


How many permutations of the letters of the word 'MADHUBANI' do not begin with M but end with I?


Find the number of numbers, greater than a million, that can be formed with the digits 2, 3, 0, 3, 4, 2, 3.


How many different arrangements can be made by using all the letters in the word 'MATHEMATICS'. How many of them begin with C? How many of them begin with T?


In how many ways can 4 red, 3 yellow and 2 green discs be arranged in a row if the discs of the same colour are indistinguishable?


Find the total number of permutations of the letters of the word 'INSTITUTE'.


If the letters of the word 'LATE' be permuted and the words so formed be arranged as in a dictionary, find the rank of the word LATE.


In how many ways can the letters of the word "INTERMEDIATE" be arranged so that:

the relative order of vowels and consonants do not alter?


Evaluate

\[^ {20}{}{C}_5 + \sum^5_{r = 2} {}^{25 - r} C_4\]

Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:

 nCr + 2 · nCr − 1 + nCr − 2 = n + 2Cr.


There are 10 persons named\[P_1 , P_2 , P_3 , . . . . , P_{10}\]
Out of 10 persons, 5 persons are to be arranged in a line such that in each arrangement P1 must occur whereas P4 and P5 do not occur. Find the number of such possible arrangements.


Find the number of permutations of n distinct things taken together, in which 3 particular things must occur together.


If 35Cn +7 = 35C4n − 2 , then write the values of n.


Write the number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines.


Write the total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×